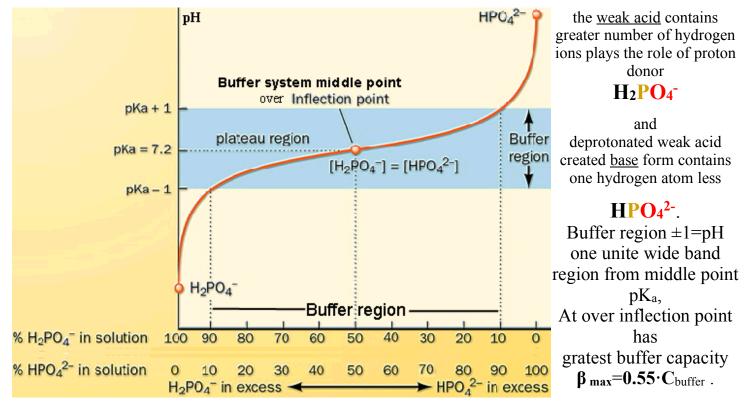
Aris Kaksis 2021. Riga Stradin's University http://aris.gusc.lv/BioThermodynamics/BufferSolution.pdf

Protolytic equilibria in water BUFFER solutions. Brønsted Acid protolysis with water.


Buffer systems in the human organism tend to Prigogine attractor **pH** value **7.36** formed of two dominate phosphate and bicarbonate buffer systems with **over inflection point** on the middle $pK_a=7,199$ and $pK_a=7,0512$. That create protonate amines $-NH_3^+$ and deprotonate carboxylates $-COO^-$ for functional activity of enzymes in proteins, amino acids, carbonic acids and amines with broadband silencing interval from pH=6 to pH=7,36.

Dominate Phosphate $H_2PO_4^-+H_2O \le HPO_4^{2-}+H_3O^+$ and Bicarbonate $CO_{2aqua}+2H_2O \le H_3O^++HCO_3^-$. Phosphate: $H_2PO_4^-a_q+H_2O+\Delta G+Q \le HPO_4^{2-}a_q+H_3O^+$ CRC 2020 data I=0,25 M and pKa=7,199 at

equilibrium:
$$\frac{[HPO_4^{2-}]\cdot[H_3O^+]}{[H_2PO_4^-]\cdot[H_2O]} = K_{eq} = K_a/[H_2O] = 10^{-7,199}/55,3 = 1,143*10^{-9}; \text{ classic value} K_a = \frac{[HPO_4^{2-}]\cdot[H_3O^+]}{[H_2PO_4^-]};$$

Henderson Haselbalh $\mathbf{pH}=\mathbf{pK}_{a}+\log \frac{[\mathbf{H}^{\mathsf{P}}\mathbf{O}_{4}^{\mathsf{T}}]_{base}}{[\mathbf{H}_{2}^{\mathsf{P}}\mathbf{O}_{4}^{\mathsf{T}}]_{acid}}$ homeostasis depends on components ratio $\frac{[\mathbf{H}^{\mathsf{P}}\mathbf{O}_{4}^{\mathsf{T}}]_{acid}}{[\mathbf{H}_{2}^{\mathsf{P}}\mathbf{O}_{4}^{\mathsf{T}}]}$. 1. Dihydrogen phosphate *buffer system form phosphate, pyrophosphate, phosphate esters like ATP ect.*

with differing iby one deprotonated H^+ hydrogen ion less $H_2PO_4^-/HPO_4^{2-}$, where

Carbonic acids, fatty acids, amino acids (proteins), protonate amines at Physiologic conditions pH=7,36 :

2a. CH₃COOH+H₂O
$$\Leftrightarrow$$
 H₃O⁺+CH₃COO⁻; K_a = $\frac{[H^{+}]\cdot[CH_{3}COO^{-}]}{[CH_{3}COOH]_{nondis}}$ =10^{-4,76}
2b. AA-COOH \Leftrightarrow AA-COO⁻ + H⁺ , K_{aCOOH} = $\frac{[AA-COO^{-}]\cdot[H^{+}]}{[AA-COOH]_{nondis}}$ =10^{-pKa}
2c. AA-NH₃⁺ \Leftrightarrow AA-NH₂ + H⁺ , K_{aNH3+} = $\frac{[AA-NH_{2}]\cdot[H^{+}]}{[AA-NH_{3}]_{protonate}}$ =10^{-pKa} ;
2d. NH₄⁺+H₂O \Leftrightarrow H₃O⁺+NH_{3 aqua} ; K_a = $\frac{[H^{+}]\cdot[NH_{3}]_{aqua}}{[NH_{4}^{+}]}$ =10^{-pKa} =10^{-9,25}
Ka=1,74*10⁻⁵ M =10^{-pKa}
2,0 < pK_{aAACOOH} < 4,9;
pK_{aAANH3+} > 8,8;
Ka= $\frac{[H^{+}]\cdot[NH_{3}]_{aqua}}{[NH_{4}^{+}]}$ =10^{-pKa} =10^{-9,25}
Ka= $\frac{10^{-14}}{1.78*10^{-5}}$ =10^{-9,25} M

3. ENZYME Carbonic Anhydrase CA as weak acid CO_{2aqua} reaction with water CO_{2aqua}+H₂O forms Buffer system strong base bicarbonate ion. Weak acid to H₂O^{/CA/}CO₂/HCO₃⁻ base bicarbonate ion.
Q+CO_{2aqua} + 2H₂O CA=> H₃O⁺+HCO₃⁻ endothermic equilibrium K_a=10^{-7,0512} M =10^{-pKa};

Weak acid protolysis Ostwald's dilution law

The buffer system of weak acid protolytic equilibrium thermodynamic studies about pH value stability, if add water so dilute buffer solution and if add a strong acid or base.

1. CARBONIC ACID protolysis

 $NH4Cl => NH_4^+ + Cl^-$

Weak acid and classic dissociation form deprotonated conjugate base: CH3COOH \Leftrightarrow CH3COO⁻ + H⁺. Sodium acetate is the conjugate base strong electrolyte $\alpha = 1$: $CH3COONa => CH3COO^{-} + Na^{+}$ As a great number of acetate ions salt do not let the dissociation of acetic acid as oppressed with acetate ions in products of dissociation equilibrium. According Le Chatelier's theorem acid dissociation is shifted to left. For this reason the dissociation degree of the acetic acid is close to zero $\alpha => 0$ but positive number.

If a strong acid is added to the buffer solution, the $H_{3O^{+}}$ ions react with base protonating CH₃COO⁻ acetate to form acetic acid : H3O⁺ + CH3COO⁻ \Leftrightarrow CH3COOH + H2O

Now there are 2 reasons, why the **pH** remains constant:

1) the strong acid (H_3O^+ ion) is transformed to a weak acid CH3COOH.

2) the concentration of acetic acid C increases, therefore for strong acid pH is more acidic. In fact, a weak acid

acetic acid dissociation degree α decreases depending on C according *Ostwald's* dilution law: $\alpha = \sqrt{\frac{K}{C}}$

For this reason, when the concentration of acetic acid grows, its dissociation degree is adjusted to be smaller and therefore the concentration of H_3O^+ ions and pH remains constant.

Assuming it all in a shorter way, the strong acid is transformed into a weak one and the dissociation degree of the weak acid is adjusted to be smaller, therefore **pH** remains constant.

If a strong base is added to buffer, the **OH**⁻ ions from the strong base react with the weak acid (acetic acid)

$OH^- + CH_3COOH => CH_3COO^- + H_2O$

Now the same two reasons for practically constant **pH** can be seen :

1) strong base OH⁻ ion deprotonates weak acid to form base form salt-acetate CH3COO⁻ ion, $\alpha = \sqrt{\frac{K}{C}}$ the dissociation degree α grows, hence, H_3O^+ concentration and pH remains constant.

2. Protonate AMONIA weak acid NH4⁺ protolysis Ostwald's dilution law

Weak ammonium acid ions and deprotonated ammonia buffer solution: $NH_4^++H_2O \Leftrightarrow H_3O^++NH_{3aqua}$.

Ammonium chloride is a strong electrolyte $\alpha = 1$::

Base NH_{3aqua} protonation product NH_4^+ ions grate amount left side in buffer solution prevent protonation of ammonia as oppressed (as the presence of NH_4^+ shifts equilibrium to the right) and protonation degree for ammonia tends to zero but is asmall positive number $\alpha =>0$.

If a strong base is added to this solution OH^- ions react with weak acid NH_4^+ and form ammonia NH_3 aqua:

$$\mathbf{OH}^- + \mathbf{NH}_4^+ \Longrightarrow \mathbf{NH}_3 \operatorname{aqua} + \mathbf{H}_2\mathbf{O}$$

Due to this reaction :

:

1) a very strong base OH^{-} ion is transformed into deprotonated weak acid form base $NH_{3 \text{ aqua}}$,

2) weak acid concentration C decreases deprotonation dissociation degree α is adjusted to be higher $\alpha = \sqrt{\frac{K}{C}}$.

Equilibrium : $\mathbf{NH_4^+} + \mathbf{H_2O} \Leftrightarrow \mathbf{H_3O^+} + \mathbf{NH_3}_{aqua}$ shifts to right and $\mathbf{H_3O^+}$ concentration **pH** remains constant.

When a strong acid is added, than H_{3O^+} ions protonate ammonia $NH_{3 aqua}$ and weak acid NH_4^+ concentration C increases but dissociation degree $\alpha = \sqrt{\frac{K}{C}}$ value decreases.

Strong base **OH**⁻ is transformed to buffer base **NH**_{3 aqua} but dissociation degree $\alpha = \sqrt{\frac{K}{C}}$ increases.

Henderson Haselbalh weak acid protolysis pH EQUATION

In discusion above have prooved why **pH** of a buffer remains constant, but it is necessary to know, how particular value (\mathbf{pK}_{a} , \mathbf{n}_{base} , \mathbf{n}_{acid}) will keep constant the **pH** by a given buffer solution.

1. Henderson Haselbalh pH expressions

The Henderson Haselbalh expression derives from weak acid deprotonation constant K_a expression.

In human body exist four type weak acids protolysis with water equilibria .

1. Phosphate, 2. carboxylate, 3. Ammonium ions, 4. Amino acids AA (carboxilate, protonate amines, tyrozine, cysteine).

1. Phosphate:
$$H_2PO_4^{+}+H_2O \Leftrightarrow H_3O^{+}+HPO_4^{2-}$$
; $K_a = \frac{[H^+]\cdot[HPO_4^{2-}]}{[H_2PO_4^-]} = 10^{-7,199}$ $K_a = 6,3*10^{-8} M = 10^{-pKa}$
2. $CH_3COOH + H_2O \Leftrightarrow H_3O^+ + CH_3COO^-$; $K_a = \frac{[H^+]\cdot[CH_3COO^-]}{[CH_3COOH]_{nondis}} = 10^{-4,76}$ $K_a = 1,74*10^{-5} M = 10^{-pKa}$
3. $NH_4^+ + H_2O \Leftrightarrow H_3O^+ + NH_3_{aqua}$; $K_a = \frac{[H^+]\cdot[NH_3]}{[NH_4^+]}aqua = 10^{-pKa} = 10^{-9,25}$ $K_a = \frac{10^{-14}}{1,78*10^{-5}} = 5,618*10^{-10} M$
4a. $AA-COOH \Leftrightarrow AA-COO^- + H^+$, $K_{aCOOH} = \frac{[AA-COO^-]\cdot[H^+]}{[AA-NH_2]\cdot[H^+]} = 10^{-pKa}$ $pK_{aAACOOH} < 4,9$;
4b. $AA-NH_3^+$ \Leftrightarrow $AA-NH_2 + H^+$, $K_{aNH3^+} = \frac{[AA-NH_2]\cdot[H^+]}{[AA-NH_3^+]protonate} = 10^{-pKa}$; $pK_{aAANH3^+} > 8,8$;

4c. **Tyr**-phenol-**OH**
$$\Leftrightarrow$$
 Tyr-phenol-**O**⁻ +**H**⁺, $K_{aTyr} = \frac{[Tyr OH]_{nedis}}{[Tyr OH]_{nedis}} = 10^{-10,07}$; Tyrosine and cysteine at physiologic pH=7,36 are just not dissociate acids, which do not form buffer.

Ions origin in solution are two sources – weak acids and electrolytes. Deprotonated weak acid form base concentration in equilibrium constant K_a expression designated as C_{base} :

 $[HPO_4^{2-}]; [CH_3COO^{-}]; [NH_3_{aqua}]; [AA-COO^{-}]; [AA-NH_2]; C_{base}$ (base).

Weak acid concentration in constant K_a expression is C_{acid}:

 $[H_2PO_4^-]$; $[CH_3COOH]_{nedis}$; $[NH_4^+]$; [AA-COOH]; $[AA-NH_3^+]$; C_{acid} (weak acid)

Replacing in the equation of K_a the weak acid and deprotonated acid concentrations we have :

 $\mathbf{K}_{\mathbf{a}} = \frac{[\mathbf{H}^+]\mathbf{C}_{\mathbf{base}}}{\mathbf{C}_{\mathbf{acid}}}$. Calculate the $[\mathbf{H}_3\mathbf{O}^+] = \frac{\mathbf{K}_{\mathbf{a}\bullet}\mathbf{C}_{\mathbf{acid}}}{\mathbf{C}_{\mathbf{base}}}$. Taking a minus logarithm from both sides :

 $log[H^{+}] = -logK_{a} - log\frac{C_{acid}}{C_{base}}$ we got the Henderson Haselbalh equation pH= -log[H₃O⁺]=pK_a+log\frac{C_{base}}{C_{acid}} converting to pH: (note, logarithm mathematics rool log a/b = -log b/a)

Factors, that affect the **pH** *value of a buffer system* The **pH** value, that is kept **constant** by a buffer. 1) buffer system forming acid weakness pK_a exponent $K_a=10^{-pKa}$;

2) deprotonated acid and weak acid ratio n_{base}/n_{acid} in buffer solution volume V;

3) not pH depends on dilution of buffer solution. Drinking the water leave safe the blood pH=7.36 constant.

4)Fourth factor, that affects **pH** of a buffer system, is temperature - increases of temperature increase the value

of K_a and this shifts pH to lower values (as $pK_a = -\log K_a$, the greater is acid K_a , the smaller is pK_a).

DIFFERENT FORMS OF pH Henderson Haselbalh EXPRESSION

Henderson Haselbalh buffer solution pH form weak acids and deprotonated acid form base.

$$pH=pK_{a}+log\frac{C_{base}}{C_{acid}}$$
Components amount ratio logarithm forms pH value. pH expression of C_{base}/C_{acid} converting to number of moles ratio n_{base}/n_{acid} as buffer system volume V is common

and can to scratch.

$$pH=pK_a+\log\frac{n_{base}}{n_{acid}} \quad pH=pK_a+\log\frac{n_{base}/V}{n_{acid}/V}$$

It is very often necessary to express the **pH** of a buffer through the concentrations of the two initial solutions of weak acid and deprotonated acid base form. So practical mix together solutions.

If the buffer solution is prepared from two solutions than numbers of moles calculate n = C'V', where C' and

$$pH=pK_{a}+log\frac{C_{salt} \bullet V_{salt}}{C_{acid} \bullet V_{acid}}$$

V' are the concentration and the volume of the initial solutions. Mixing total buffer solution volume is $V_{buf}=V'_{base}+V'_{acid}$. The Henderson Haselbalh equation is used for practical calculations for pH.

 Δn_{ac} is a strong acid moles, for example HCl, added to buffer solution, which decreases Brensted base amount $n_{ac} \rightarrow n_{ac}$ and increases the buffer weak acid amount $n_{ac} \rightarrow n_{ac}$ thus change

$$pH_{ac}=pK_{a}+log\frac{n_{salt} - \Delta n_{ac}}{n_{acid} + \Delta n_{ac}}$$
$$pH_{b}=pK_{a}+log\frac{n_{salt} + \Delta n_{b}}{n_{acid} - \Delta n_{b}}$$

 $n_{base} - \Delta n_{ac}$ and increases the buffer weak acid amount $n_{acid} + \Delta n_{ac}$, thus change the buffer system **pH** value about $\Delta pH = pH - pH_{ac}$ to decrease that. Adding the strong base, for example NaOH, change the buffer system **pH** value to increase that about $\Delta pH = pH_b - pH$.

EXAMPLE OF BUFFER ACTION studies

Now, when the equation for buffer pH is derived, we can study the buffer action.

Let us imagine, that 0.01 mole of HCl is added to a buffer system, containing 0.5 moles of acetic acid and 0.5 moles of sodium acetate. pH values before and after addition of HCl ($pK_a = 4.74$ for acetic acid) can be calculated as follows: pH before addition of HCl: pH = 4,74 + log(0.5/0.5) = 4.74 + log 1 = 4.74 + 0 = 4.74

Strong acid addition of HCl causes a reaction : HCl + CH₃COONa => CH ₃COOH + NaCl

As the number of moles of HCl is 0.01, the number of moles of acetic acid will increase by 0.01 moles and $n_{CH_3COON_a}$ will decrease by 0.01 moles, therefore : pH after addition of HCl:

 $pH_2 = 4.74 + log((0.5 - 0.01) / (0.5 + 0.01)) = 4.74 + log 0.996 = 4.74 - 0.002 = 4.738$ and the pH change is $\Delta pH = pH_1 - pH_2 = 0.002$.

At the same time, if this amount of HCl was added to 1 liter of pure water (the initial pH = 7 in pure water), after addition of HCl, concentration of H⁺ ions would be 0.01 mole/l (as HCl is added to 1 l of H₂O), making pH of solution: $pH = -log [H^+] = -log 0.01 = -(-2) = 2$. Thus, the pH change in this case is $\Delta pH = 5 = 7 - 2$.

As one can see, the **pH** change, caused by **HCl** in a buffer solution is negligible when compared to the **pH** change, caused by the same amount of acid in pure water, where the change from **pH** = 7 to **pH** = 2 (from neutral to strongly acidic) is drastic for hydrogen ion [**H**⁺] concentration $\frac{[\mathbf{H}^+]_{\mathbf{HCl}}}{[\mathbf{H}^+]} = \frac{\mathbf{10}^{-2}}{\mathbf{10}^{-7}} = \mathbf{10}^{5} = \mathbf{100000}$ times.

BUFFER CAPACITY β

The **pH** value of the weak acid buffer system is **Henderson Haselbalh** equation:

pH=pK_a+log $\frac{n_{base}}{n_{acid}}$

where \mathbf{n}_{base} and \mathbf{n}_{acid} are the numbers of equivalents of salt and acid respectively.

If an acid is added to buffer solution, it will react with the base n_{base} and will decrease (at the same time, as more weak acid will be formed n_{acid} will increase).

This means, that the buffer system cannot stand against just any amount of added acid. If the number of equivalents of the added strong acid reaches the number of equivalents \mathbf{n}_{base} of the base, present in buffer system, all base will be used up and the resistant **pH** constant buffer system doesn't exist anymore.

As well, if a strong base is added to the buffer system, it will use the weak acid of buffer system and the buffer system can stand against addition of base only until the number of equivalents of the added base is equal to the number of equivalents \mathbf{n}_{acid} of weak acid.

From the discussion above one has to make a conclusion, that a value, that characterizes the ability of buffer system to stand against addition of strong acid or strong base, is necessary. Such a value is buffer

capacity, which is expressed as

$$\beta = \frac{\Delta \mathbf{n}}{\Delta \mathbf{p} \mathbf{H} \bullet \mathbf{V}_{buffer}} = \left(\frac{\mathbf{mol}}{\mathbf{Liter}}\right)$$

where $\Delta \mathbf{n}$ is the number of equivalentmols of the strong acid or base, that is added to the buffer,

 ΔpH is the pH change, caused by the addition of strong acid Δn_{ac} or strong base Δn_{b} ,

 V_{buffer} is the volume of the buffer solution, to which the strong acid or strong base is added.

Buffer capacity units are equivalent mol/Liter. The definition of buffer capacity in words is as follows :

Buffer capacity β shows, what strong acid mol numbers Δn_{ac} or a strong base Δn_b can

be added to 1 liter V_{buffer} of buffer solution to shift its pH value for 1 pH unit.

On middle point buffer capacity is affected by four reasons :

1. the total summary concentration of buffer solution C_{base} ' + C_{acid} '= C'

Buffer capacity is proportional to summary total concentration $C' = C_{base}' + C_{acid}'$.

2. the ratio between buffer components on middle point is $\frac{n_{base}}{n_{acid}} = 1$ with reaching

2. <u>maximal value</u> $\beta_{acid} = \beta_{base} = 0.55 \cdot C'$. Henderson Haselbalh buffer equation on middle point

 $pH=pK_a+\log \frac{n_{base}}{n_{acid}}$ is equal to weak acid constant $pH=pK_a$ value. because $\log \frac{n_{baze}}{n_{skab}} = \log 1 = 0$.

3. deviated from the ratio one $n_{base}/n_{acid}=1$, middle point" both buffer capacities against strong

acid β_{ac} and buffer capacity against strong base β_{b} fast becomes smaller.

Single weak acid buffer system action broad $pH=pK_a\pm 1$ is in two units of pH.

- 4. Buffer capacities on "middle point" are *symmetrically* equal $\beta_{ac}=\beta_b$. Added strong acid pH decreases about $\Delta pH=-1$, but added strong base pH increases about $\Delta pH=+1$.
- 5. Amino acids and proteins using 47 pK_a constants create broadband buffer systems with inactive buffer capacity silencing zone pH 6 to 7,36. On this zone dominate phosphate pK_a=7,199 and bicarbonate pK_a=7,0512 buffer systems maintaining 7,36 pH.

Phosphate buffer system H₂PO₄^{-/}/HPO₄²⁻; pH=pK_a+log $\frac{[H P O_4^{2-}]}{[H_2 P O_4^{-}]}$ =7,199+log $\frac{1,45}{1}$ =7,36 Buffer capacity strong acid Δn_{ac} or strong base Δn_{b} equivalent mole/ into one Liter buffer solution $\Delta pH=\pm 1$ $pK_a = 7.199, H_2PO_4 / HPO_4^2$ β , eq.mol/L 0,6 0,5 0,4 0,3 0,2 0,1 <mark>,</mark>D

1 2 3 5 9 10 11 12 Δ 8 13 0 6 7 Buffer system middle point pH=pK_a=7,199 over inflection point maximum of buffer capacity β =0.55 pН

pH=pKa=7,199

Concentration of Buffer solution $C_{buffer} = 1 M$ red Concentration of Buffer solution $C_{buffer}=0.5 \text{ M}$ blue Concentration of Buffer solution C_{buffer}=0.1 M green

 $H_2PO_4^-$ weak acid, contains one number hydrogen more and $H_2PO_4^-$ is weak acid.

0

HPO ₄ ²⁻ deprotonated weak acid form of <u>base</u> ,
contains one hydrogen les and
HPO_4^{2-} is protolytic base

1) Biological important phosphate buffer system $H_2PO_4^-$ / HPO_4^{2-} with pK=7,199 value.

1a) Biological ubiquities exist phosphate buffer system of the organic esters of phosphoric acid

so as ATP (adenosine tri phosphate), ADP (adenosine diphosphate),

CTP, CDP, GTP, GDP, TTP, TDP, UTP, UDP, NADH B₃ vitamin,

CTP, CDP, GTP, GDP, TTP, TDP, UTP, UDP, NADH B₃ vitamin, FADH₂ B₂ vitamin, phospho proteins, glucose phosphate, fructose $\mathbf{R} - \mathbf{O} - \mathbf{P} = \mathbf{O}$

phosphate, etc. :

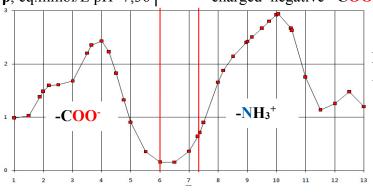
If there are any difficulties to understand the structure of compounds, remember,

that phosphoric acid can be shown in structure as in the ester of phosphoric acid one of the hydrogen atoms is replaced by an organic

 $\frac{\mathbf{0}^{-}}{\mathbf{H}\mathbf{0}-\mathbf{P}=\mathbf{0}/\mathbf{H}\mathbf{0}-\mathbf{0}$ radical. Practically the buffer system consists of a mono substituted and

bi substituted salts of the ester. Total concentration 0,115 $M = [H_2PO_4^-] + [HPO_4^2^-]$ in muscle

cells cytosole.


14

2) Inactive silencing interval ΔpH from 6 to 7,36 indispensible for proteins - amino acids charged negative $-COO^{-}$ and positive $-NH_{3}^{+}$ make enzymes functional activity.

••••••••••			•••••••••	preaction, preaction, preakgioup		
Amino Acid	pK_{aCOOH}	pK_{aNH3^+}	pKaRgroup	-COO ⁻ deprotonated carboxyl negative anion s	alt groups	
Isoleucine	2.36	9.68		protonated positive charged ammonium grou	U 1 /	
Valine	2.32	9.62		neutral phenolic acid – OH and - SH neutral sulfhydr	1 ,	
Leucine	2.36	9.60		incutat phenome acta – O T and - O T neutral surmydr	yi gibups.	
Phenylalanine	1.83	9.13		In physiologic medium pH=7,36 ± 0.01		
Cysteine	1.96	10.28	8.18	Carbonic acid groups deprotonated negative charged -COO ⁻ and		
Methionine	2.28	9.21		amino groups \mathbf{R} - \mathbf{NH}_{3}^{+} protonated positive charged.		
Alanine	2.34	9.69		Table given maximal pK_{a-COOH} value smaller about 7,36:		
Proline	1.99	10.96		$pK_{a-COOH} = 4.25 < 4.9$ (fatty acids) <7,36 and		
Glycine	2.34	9.60		given smallest pK _{a-NH3+} value grater about $7,36 <$	$9,04 = pK_{a-NH3+}$	
Threonine	2.11	9.62		20 amino acids have four protolytic pK _a equilibria	ι in 47 groups:	
Serine	2.21	9.15		1. R-COOH \Leftrightarrow R-COO ⁻ + H ⁺ , 2	22 groups of 47	
Tryptophan	2.38	9.39			2+1 group of 47	
Tyrosine	2.20	9.11	10.07	3. Tyrosine-phenol-OH⇔Tyrosine-phenolate-O ⁻ +	\mathbf{H}^{+} one group,	
Histidine	1.82	9.17	6.00	4. Cysteine-SH ⇔Cysteine-S [−] +	$-\mathbf{H}^+$ one group.	
Aspartate	1.88	9.60	3.65	NpK _a number of parallel protolytic equilibria average pK _a value is		
Glutamate	2.19	9.67	4.25	calculated as $pK_a=(\Sigma pK_{a R group}+pK_{a-NH3}+pK_{a-COOH})/NpK_a$		
Asparagine	2.02	8.80				
Glutamine	2.17	9.13		In Ostwald's dilution law calculates one the pH of solution at		
Lysine	2.18	8.95	10.53	concentration C logarithm: pH= $\frac{pK_a - \log C}{2}$ =		
Arginine	2.17	9.04	12.48	2		
TT	D1 · 1	· • • •	2 1 .		· · · 1	

Like to hemoglobin proteins as long chain polypeptides and free amino acids with four type weak acid groups constitute 47 values of weak acid cknstants: pK_{a-COOH} pK_{a-NH3+} pK_{aRgroup}.

Human Physiologic pH=7,36 dominate Bicarbonate, Phosphate buffers perform proteins - amino acids β, eq.mmol/L pH=7,36 charged negative $-COO^{-}$ and positive $-NH_{3}^{+}$ make enzymes functional activity.

-COOH pK_a values are on interval from 2 to 4,9 and $-NH_3^+$ pK_a values are on interval from 8 to 10. Proteins buffer have silence region from **pH=6** to 7.36

23 thousand protein molecules total buffer solution concentration C_{buffer}=2,3 mM . Buffer capacity at physiologic pH=7,36 is β =0,7 mM. Indispensible inactive silencing interval ΔpH from 6 to 7.36 providing attractor pH=7,36 with two dominate buffer systems

Bicarbonate and Phosphates

pН **Shuttle** hemoglobin-based bicarbonate $4HCO_3^-$, proton H⁺ to oxygen O_{2aqua} concentration sensitive exchange: $4O_{2aqua} + (H^{+}His63,58)_{4}Hb_{T}$..salt bridges.. $(HCO_{3}^{-})_{4} + 4H_{2}O < = >Hb_{R}(O_{2})_{4} + 4H_{3}O^{+} + 4HCO_{3}^{-}$: Arterial $[O_2]=6.10^{-5} \text{ M} [Hb_R(O_2)]=0.96$, venous $[O_2]=0.486.10^{-5} \text{ M} [Hb_R(O_2)]=0.66$ homeostasis $[(H^{+})_{4}Hb_{T}$..salt bridges.. $(HCO_{3})_{4}]=0.04$, venous $[(H^+)_4Hb_T$...salt bridges.. $(HCO_3)_4$ =0,34 $K = [Hb_R(O_2)] * [H_3O^+]^4 * [HCO_3^-]^4 / [(H^+)_4 Hb_T salt bridges(HCO_3^-)_4] / [H_2O]^4 / [O_2]^4 = 400000 * 2.23 * 10^{-44};$ arterial K= $0.96*(10^{-7.36})^{4*}(0.0154)^{4}/0.04/55^{4}/6/10^{-5}) > 0.96/0.04/6/10^{-5} = 400000*$ $=(10^{(-7,36)})^{4*}(0,0154)^{4/55^{4}}=2,23^{*}10^{(-44)}$

venous $K=0,66*(10^{(-7,36)})^{4*}(0,0154)^{4/0},34/55^{4/0},486/10^{(-5)} <>0,66/0,34/0,486/10^{(-5)}=399419$ Circulation cycle generate $[H^+]=459*6\cdot10^{-5} \text{ M}=0,0275 \text{ M}=[HCO_3^-]=[H^+];$ Normal [HCO₃]=0,0154 M, [CO_{2aqua}]=0,0076 M and pH=7,36

In blood *plasma* dominate enzyme CA bicarbonate pH=7.36±0,01, protein and phosphate buffer solutions.

In sweat, urine and digestive apparatus dominates bicarbonate system and phosphate system is too present. Besides the normal "chemical" mechanisms of buffer action in maintaining constant pH=7.36±0,01, with deoxy hemoglobin (H⁺His63,58)₄Hb_T (Tense state), oxy hemoglobin (O₂His63,58)₄Hb_R (Relax state) and with carbonic anhydrase CA driven bicarbonate buffer systems a joint physiological mechanism of action carries out the inhaled O₂ and exhaled CO₂ between AIR in *lungs* and tissues on interface human body / environment.

3) Third bicarbonate buffer system in human organism creates oxidation reactions.

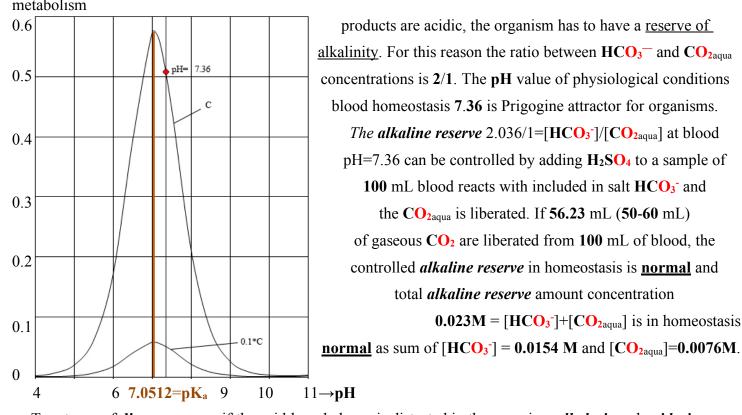
Human pH=7,36 of blood Henderson Haselbalh CA equation homeostasis Main buffer system CA using hemoglobin <u>shuttle</u> stabilizes pH=7,36 and arterial level [O_{2aqua}] =6·10⁻⁵ M: deoxy hemoglobin(H⁺His63,58)₄Hb_T(Tense state)<=>oxy hemoglobin(O₂His63,58)₄Hb_R(Relax state)+4H⁺

Carbonic Anhydrase (CA) driven – bicarbonate $2H_2O'^{CA'}CO_{2aqua} / H_3O^+ + HCO_3^-$ buffer system Organism store H⁺ and HCO_3⁻ as Krebs cycle metabolic product carbonic dioxide, if CA produced buffer system acidic form CO_{2aqua} and H_3O^+ . For this reason, the acid form have to be transported out of organism in two metabolites through proton channels H⁺ across membranes and through bicarbonate channels HCO₃⁻ with deoxy hemoglobin <u>shuttle</u> $4O_{2aqua} + (H^+His63,58)_4Hb_T <=>(O_2His63,58)_4Hb_R + 4H^+$ capturing proton in distal histidine and salt bridge linked HCO₃⁻...H₃⁺N- bicarbonate. Effective of controlled acid form's is breathing out $CO_2\uparrow_{gas}$, that stabilize pH of blood pH=7.36 by metabolites exchange via AIR with oxygen O₂ respiration in and carbon dioxide CO₂ breathing out.

<u>Carbonic anhydrase</u> CA make conversion of CO_{2aqua} to bicarbonate anion HCO_3^- in to water medium fast and establish acid-base $Q + CO_{2aqua} + 2H_2O < CA > H_3O^+ + HCO_3^-$ endothermic equilibrium at pH=7,36 as producing right side reaction products $H_3O^+ + HCO_3^-$ demanding to heat. So Heating +Q shifts equilibrium right side and as soon as H_3O^+ concentration increase as oxidation product CO_{2aqua} forms two H_3O^+ and HCO_3^- . Absence of <u>carbonic anhydrase</u> CA reaction drives to left as CO_2 evaporated out consuming H_3O^+ and $HCO_3^$ in **lungs** and acid concentration [H_3O^+] remains stabilized at homeostasis level pH=7.36. If concentration H_3O^+ decreases, so increases pH>7.36 in kidneys, <u>carbonic anhydrase</u> equilibrium is shifted to the right and the extra amount of HCO_3^- passes into urine and is transported out and pH stabilizes to homeostasis pH=7.36 level according Le Chatelier's principle.

The Brønsted acid is blood-water solution CO_{2aqua} , which in. The dissolved into water H_2O (into blood) carbonic dioxide CO_{2aqua} occurring in cell converted with <u>carbonic anhydrase</u> CA to $H_3O^+ + HCO_3^-$. The water H_2O and carbonic dioxide CO_{2aqua} , finally, is acid in direct equilibrium with HCO_3^- base plus ions H^+ .

<u>Carbonic anhydrase</u> equilibrium constant pK=7.0512 decreases concentration acid form CO_{2aqua} into water avoid accumulation therefore hydrogen carbonate HCO_3^- and hydrogen ions H_3O^+ are involved into blood pH formation according buffer solution


Henderson-Haselbalh equation: $7.36 = pH = pK + \log \frac{[HCO_3]}{[CO_{2avua}]} = 7.0512 + \log \frac{[HCO_3]}{[CO_{2avua}]}$; $\frac{[\text{HCO}_3]}{[\text{CO}_2_{aqua}]} = 10^{(\text{pH-pK})} = 10^{(7.36-7.0512)} = 10^{0.3088} = \frac{2.0361}{1} \text{ the ratio } [\text{HCO}_3^-] / [\text{CO}_{2aqua}] \text{ being approximately } 2/1.$ In medical literature CO_2 amount is given, but as 1 mole CO_2 creates 1 mole $H_2O'^{CA'}CO_{2aqua}$, it is the same. 10 Buffer region middle point is the pН over inflection point in graph o: 9 $pH=pK_a = 7.0512; [HCO_3^-]/[CO_2] = 1$ is one as well buffer component 8 Blood pH=7.36 concentrations are equal $[HCO_3^-] = [CO_2]$ as well as bicarbonate 7 $pH \stackrel{1}{=} 7.0512 [HC0_3^-]/[C0_2]$ salt [HCO₃⁻⁻] concentration is equal to 6 Brønsted weak acid dissolved in blood 5 CO_2 concentration [CO_{2aqua}]. Alkaline reserve at 7.36 = pH is 4 **<u>normal</u>** as $\frac{[\text{HCO}_3^-]}{[\text{CO}_2]} = \frac{2.0361}{1}$. 3 2 HCO3⁻0% 50% 100% salt – buffer system base CO₂+ 2H₂O 100% 50% 0% weak acid buffer component

As soon as H_3O^+ concentration grows for some reason, <u>Carbonic anhydrase</u> CA equilibrium is shifted to left and channeling H_3O^+ and HCO_3^- transported CO_2 out by respiration in **lungs** so acid concentration $[H_3O^+]$ stabilizes. If concentration H_3O^+ decreases, <u>carbonic anhydrase</u> CA equilibrium is shifted to the right and the extra amount of HCO_3^- through **kidneys** passes into urine. Bicarbonate channels in **kidney** cells are open at higher values of **pH**>7.36 from side of blood circulation, but **lungs** channel transport are opened for H_3O^+ and HCO_3^- at lower values **pH**<7.36.

Assuming $C=1M=[HCO_3^-]+[CO_{2aqua}]$

This value **pK=7.0512** is carbonic anhydrase made equilibrium

constant very friendly to blood pH=7.36. As most of

β, eq.mol/L buffer capacity metabolism

Two types of <u>diseases</u> occur, if the acid-base balance is distorted in the organism <u>alkalosis</u> and <u>acidosis</u>. 1) *Respiratory alkalosis* occurs, if **lungs** are hyperventilated, for example, during anesthesia. If CO_{2aqua} concentration decreases **pH**>7.36 alkalosys due to hyperventilation, the blood vessels are broadened and their tonus is lowered as a result of it, therefore O_2 supply to brain is shortened.

For this reason it is necessary to use AIR mixtures of O_2 and CO_2 during anesthesia instead of pure oxygen. If respiratory alkalosis occurs for other reasons than hyperventilation of **lungs**, the ratio 2/1 of the buffer components can be re-established in a longer period of breathing normal, CO_2 -containing AIR 350 ppm.

2) *Respiratory acidosis* occurs in the cases, when the concentration of CO_2 in the AIR is increased. The result of this is that the action of breathing muscles becomes more difficult. Again, this can be canceled, if the patient starts breathing normal AIR. Hoverer, if increased CO_2 content in the AIR lasts long, metabolic acidosis occurs **pH**<7.36. Metabolic acidosis hemoglobin reserves depleted oxygen concentration below venous $[O_2]=1,85 \cdot 10^{-5}$ M.

For this reason only the concentrations of carbonic dioxide CO_{2aqua} into water H_2O (avoid carbonic acid H_2CO_3 formation) and bicarbonate HCO_3^- and hydrogen ions H_3O^+ are included into equation for blood pH.

There are two sequences, which drive enzymes CA and shuttle hemoglobin governed gradual reactions

I) $O_{2AIR}+H_2O \xrightarrow{\text{membrane}} H_2O+O_{2aqua}; 4O_{2aqua}+ deoxy(H^+His63,58)_4Hb_T <= [O_2]=6 \cdot 10^{-5} M => oxyHb_R(O_2)_4+4H^+,$ Oxidation products $C_6H_{12}O_6 + 6O_{2agua} + 6H_2O \leftarrow Krebs Cycle \rightarrow 6CO_{2agua} + 12H_2O \leftarrow CA \rightarrow 6H_3O^+ + 6HCO_3^-$ II) $Q_{aqua}+CO_{2aqua}+2H_2O \leq CA = >H_3O^++HCO_3^- \xrightarrow{\text{nembrane}} H_2O+H_2CO_3+Q(gas) \xrightarrow{} H_2O+CO_2\uparrow_{gas}+H_2O.$ **II) process** first gradual reaction enzyme Carbonic anhydrase **CA** made equilibrium: Free energy consumes $\Delta G_{\rm H}$ for reaction endoergic: $CO_{2aqua} + 2H_2O + \Delta G + Q \leq \underline{CA} = H_3O^+ + HCO_3^-$

Enthalpy heat consumed $\Delta H_{\rm H}$ for reaction endothermic: $\Delta H_{\rm H} = \Delta H^{\circ}_{\rm H30} - \Delta H^{\circ}_{\rm HC03} - 2\Delta H^{\circ}_{\rm H20} - \Delta H^{\circ}_{\rm C02} = 9,7576 \, {\rm kJ/_{mol}}$ = -285,81-689,93-(2*-285,85-413,7076) = -975,74+985,3276=9,7576 kJ/mol endothermic

Endothermic as needed heat supply to drive reaction forwards. Hess free energy change endoergic positive:

 $\Delta G_{\text{Hess}} = \Delta G^{\circ}_{\text{H30}} + \Delta G^{\circ}_{\text{HC03}} - 2\Delta G^{\circ}_{\text{H20}} - \Delta G^{\circ}_{\text{C02}} = -213,2746 - 544,9688 - (2^{*} - 237,191 - 385,98) = 102^{\text{kJ}}/\text{mol}.$

Enzyme CA make classic acid constant weak $K_a = 10^{-7.0512}$ or exponent pK_a = 7,0512 so

very close to **pH** value 7,36. Water concentration $[H_2O]$ =55.3 M is constant so included in value K_{eq}. Enzyme CA drive reaction with two water molecules endoergic:

 $\mathbf{CO}_{2aqua} + 2\mathbf{H}_{2}\mathbf{O} \leftarrow \underline{\mathbf{CA}} \rightarrow \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{HCO}_{3}; 10^{-7.0512} = \mathbf{K}_{a} = [\mathbf{H}_{2}\mathbf{O}]^{2}\mathbf{K}_{eq} = [\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{HCO}_{3}]/[\mathbf{CO}_{2aqua}] \text{ as unfavored}$ $\frac{[\text{HCO}_3]_{\text{aqua}} \cdot [\text{H}_3\text{O}^+]}{[\text{CO}_2]_{\text{aqua}} \cdot [\text{H}_2\text{O}]^2} = K_{eq} = K_a / [\text{H}_2\text{O}]^2 = 10^{-7,0512} / 55,3457339^2 = 2,906*10^{-11} = 10^{-10.54} \text{ . Free energy change is}$

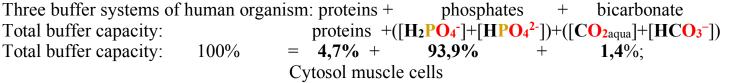
 $\Delta G_{eq} = -RTln(K_{eq}) = -8.3144 \cdot 298.15 \cdot ln(10^{-10.224}) = 60.145 \text{ kJ/mol} \text{ smaller as Hess value } 102 \text{ kJ/mol} \text{ according Prigogine}$ energy change minimum for equilibrium, where R=8,3144 J /mol/_K and T=298,15 K (25°C).

II) process second gradual reaction concentration gradient and electrochemical membrane potential bicarbonate ion $\mathbf{HCO_3}^-$ and proton \mathbf{H}^+ 1. $\mathbf{E}_{\mathrm{H}}=\mathbf{P} \cdot \mathbf{lg}([10^{-\mathbf{pH}}_{\mathrm{extraMit}}/10^{-\mathbf{pH}}_{\mathrm{Mitochon}})=0,06154*\mathbf{lg}(10^{2},36)=0,14523$ V; 2. $E_{HCO3-Mitochon} = -P \cdot log([HCO_3 \cdot cytosol]/[HCO_3 \cdot Mitochon]) = -0,06154 \cdot log(0.0154/0,0338919) = 0,0210821 V;$ $E_{sum}=0,14523+0,0210821=0,1663168$ V = $E_{membrane}$; $\Delta G_F=nFE=-1*96485*0,1663168=-16,0471$ kJ/mol; 3. ΔG_{HCO3} -=RTln([HCO_{3cytosol}]/[HCO_{3Mitoch}])=8,3144*310,15*log(0,0154/0,0338919)= -2,0341094 kJ/mol : 4. $\Delta G_{H+}=-\mathbf{RTln}([\mathbf{H}_{3}\mathbf{O}^{+}]_{extraMit}/[\mathbf{H}_{3}\mathbf{O}^{+}]_{Mitochon})=-\mathbf{RTln}(10^{-7,36}/10^{-5})=-8,3144*310,15*\mathbf{ln}(10^{^{2,36}})=-23,3943^{kJ}/_{mol};$ Total $\Delta G_{\text{total}} = \Delta G_F + (\Delta G_{\text{HCO3}} + \Delta G_{\text{H}+}) = -16,0471 + (-2,0341094) + (-23,3943) = -41,4755 \text{ kJ/mol}$ exoergic transfer. exoergic reaction is driven by concentration gradients through proton and bicarbonate channels of membrane. **II)** process third gradual neutralisation:

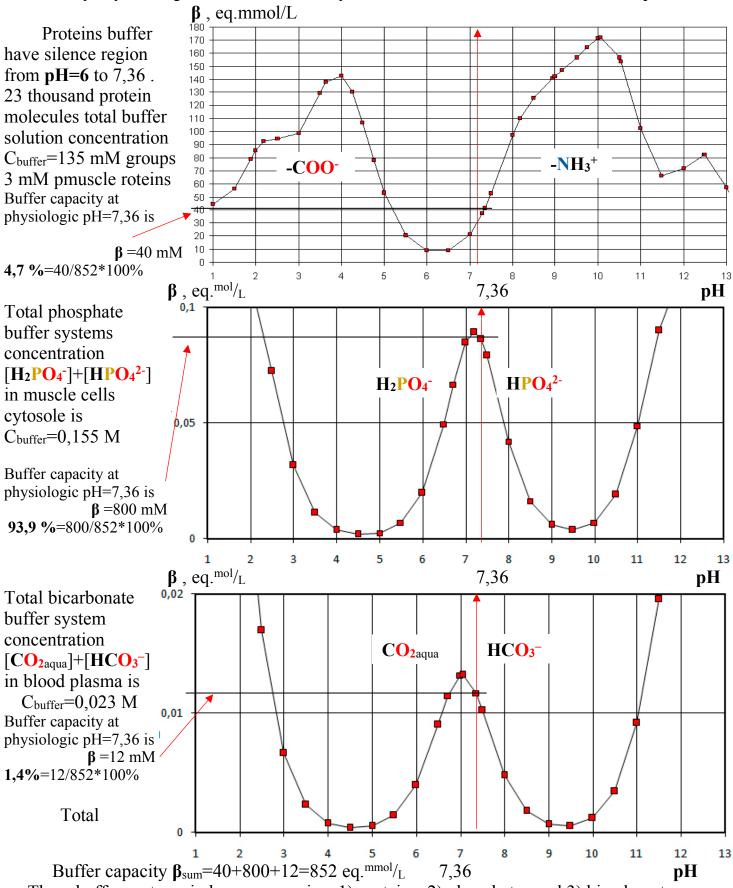
 $H_3O^+ + HCO_3^- \rightarrow 2H_2O + CO_{2aqua} + Q = 7,1928 \text{ kJ/mol} \text{ exothermic} + \Delta G = -102 \text{ kJ/mol} \text{ exoergic}.$ $\Delta G_{\text{Hess}} = 2\Delta G^{\circ}_{\text{H20}} + \Delta G^{\circ}_{\text{C02}} - \Delta G^{\circ}_{\text{H30}} - \Delta G^{\circ}_{\text{HC03}} = 2^{*} - 237, 191 - 385, 98 - (-213, 2746 - 544, 9688) = -102^{\text{kJ}}/\text{mol};$ $\Delta H_{\text{Hess}} = 2\Delta H^{\circ}_{\text{H20}} + \Delta H^{\circ}_{\text{C02}} - \Delta H^{\circ}_{\text{H30}} - \Delta H^{\circ}_{\text{HC03}} = 2^{*} - 285,85 - 413,7976 - (-285,81 - 692,4948) = -7,1928 \text{ kJ/mol};$

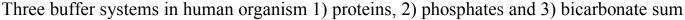
 $v_2=k_2 \cdot [H_3O^+][HCO_3^-]=1,6958*10^{(-5)}*0,0154=261153200 M^2 s^{-1};$ Neutralisation velocity; Extra Mitochondrial pH=5 at presence of CA and Alveolar epithelia cell surface pH=5 at absence CA.

II) process <u>fourth gradual</u> reaction is non-enzymatic evaporation: $[CO_{2aqua}]=0,0004*1,878=0,00075125$ M;
Evaporation at absence Carbonic Anhydrase CA $CO_{2aqua}+Q(20,3^{kJ}/mol)$ endothermic $\leq >CO_{2}\uparrow_{gas}+\Delta G(-8,379)$

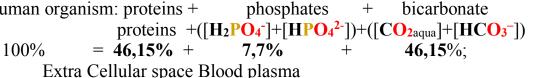

Substance	$\Delta H^{\circ}_{\text{Hess}},{}^{kJ}\!/_{mol}$	$\Delta S^{\circ}_{\text{Hess}}, J'_{\text{mol/K}}$	$\Delta G^{\circ}_{\text{Hess}},{}^{kJ}\!/_{mol}$
H_3O^+	-285,81	-3,854	-213,274599
- O H ⁻	-230,015	-10,9	-157,2
HCO ₃ -	-689,93	98,324	-586,93988
HCO ₃ -	-692,4948	-494,768	-544,9688
H_2O	-285,85	69,9565	-237,191
H_2O	-286,65	-453,188	-151,549
CO _{2aqua}	-413,7976	117,5704	-385,98
CO ₂ ↑gas	-393,509	213,74	-394,359

 $^{kJ}/_{mol}$;

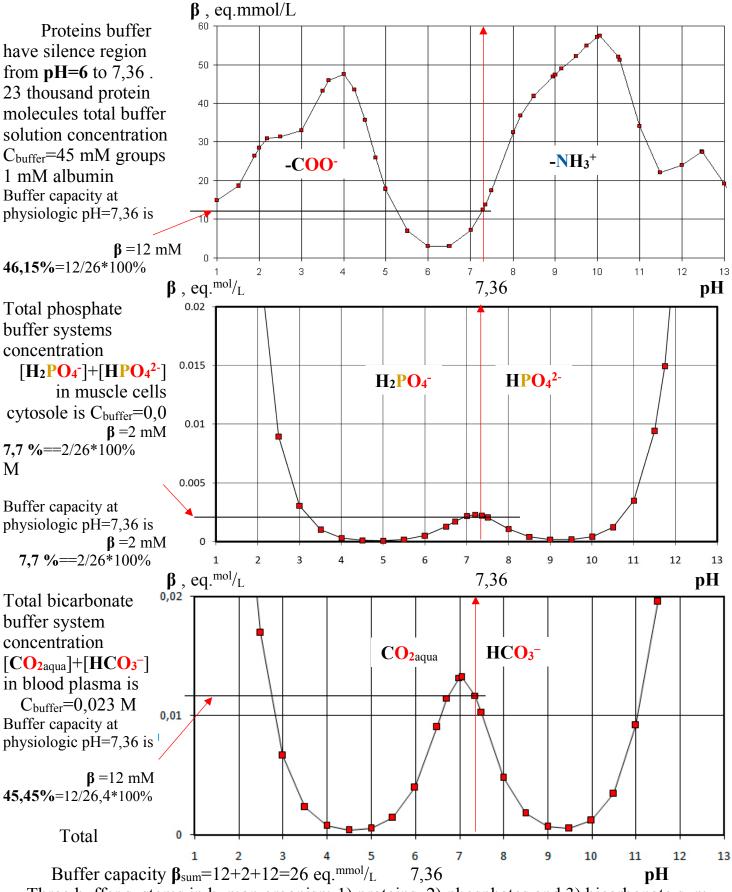

Evaporation $\Delta H_{\text{Hess}} = \Delta H^{\circ}_{\text{CO2}gas} - \Delta H^{\circ}_{\text{CO2}aq} = 20,3 \text{ kJ/mol}$ =-393,509+413.7976=20,3 ^{kJ}/_{mol}; endothermic..... Evaporation $\Delta G_{\text{Hess}} = \Delta G^{\circ}_{\text{CO2}gas} - \Delta G^{\circ}_{\text{CO2}aq} = -8,379 \text{ kJ/mol}$ =-394,359+385,98= -8,379 kJ/mol exoergic..... Solubility $\Delta G_{\text{Hess}} = \Delta G^{\circ}_{\text{CO2ag}} - \Delta G^{\circ}_{\text{CO2gas}} = 8,379 \text{ kJ}_{\text{mol}}$ $K_{sp}=K_{eq}=EXP(-\Delta G_{eq}/R/T)=0.034045=1/29.375$ $\frac{[\text{CO}_2 \text{ aqua}]}{[\text{CO}_2 \text{ gas}] \cdot [\text{H}_2\text{O}]} = K_{sp} = 0,034045 = 1/29,375$


 $\frac{[\texttt{CO}_2 \text{ gas}] \cdot [\texttt{H}_2 \texttt{O}]}{[\texttt{CO}_2 \text{ aqua}]}$ =K_{evaporation}=29,375 ; Evaporation equilibrium at absence Carbonic Anhydrase CA.

 $[CO_2\uparrow_{gas}]=29,375*[CO_{2aqua}]/[H_2O]=29,375*0,0076/55,3457339=0,00403$ mol fraction; pH=7,36. $[HCO_3]=0,0154 \text{ M} \text{ and } [CO_{2aqua}]=0,0076 \text{ M} \text{ if } pH=7,36; \text{ At } pH=5=7,0512+log(0,001/[CO_{2aqua}]);$ $10^{(5-7,0512)} = 0,001/[CO_{2aqua}]; [CO_{2aqua}] = 0,001/10^{(5-7,0512)} = 0,1125; pH=5;$ $[CO_2\uparrow_{gas}]=29,375*[CO_{2aqua}]/[H_2O]=29,375*0,1125/55,3457339=0,05971$ mol fraction; Atmospheric 0,0004. Total buffer capacity: Total buffer capacity:



Buffer capacity is strong acid Δn_{sk} or base Δn_b equivalent mol / in one Liter of buffer solution $\Delta pH=\pm 1$



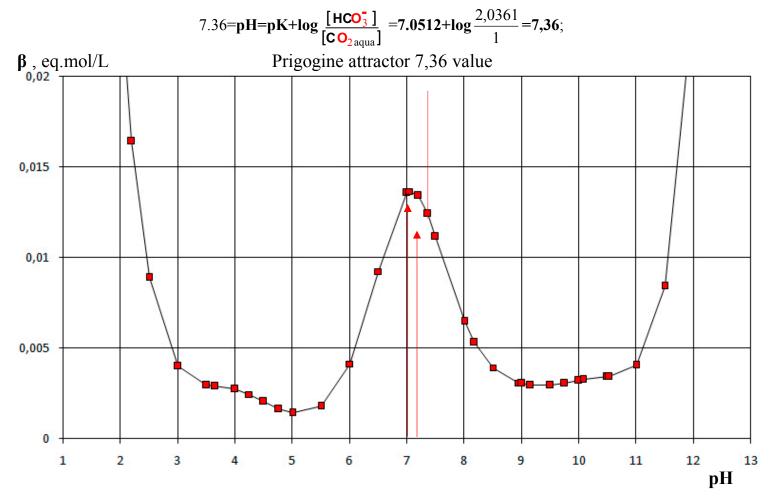
Three buffer systems of human organism: proteins + Total buffer capacity: proteins +(Total buffer capacity: 100% = 46,15% +

Buffer capacity is strong acid Δn_{sk} or base Δn_b equivalent mol / in one Liter of buffer solution $\Delta pH=\pm 1$

Three buffer systems in human organism 1) proteins, 2) phosphates and 3) bicarbonate sum

1) **Hepta peptide Ser-Cys-Arg-Tyr-Asp-Lys-Glu** eight protolytic equilibria constants: pK_a : 9,15, 8,18, 12,48, 10,07, 3,65, 10,53, 4,25, 2,19

$$K_{aCOOH} = \frac{[Glu-COO^{-}] \cdot [H^{+}]}{[Glu-COOH]_{nedis}}; K_{aGluCOOH} = \frac{[Glu-COO^{-}] \cdot [H^{+}]}{[Glu-COOH]_{nedis}}; K_{aLysNH3+} = \frac{[LysNH_{2}] \cdot [H^{+}]}{[LysNH_{3}^{+}]_{protonēts}};$$


$$K_{aAspCOOH} = \frac{[AspOO^{-}] \cdot [H^{+}]}{[AspOOH]_{nedis}}; K_{aTyrFenolsOH} = \frac{[RfenolO^{-}] \cdot [H^{+}]}{[RfenolOH]_{nedis}}; K_{aRArgNH+} = \frac{[ArgNH] \cdot [H^{+}]}{[ArgNH_{2}^{+}]_{protonēts}};$$

$$K_{aCysSH} = \frac{[R-CS^{-}] \cdot [H^{+}]}{[R-CSH]_{nedis}}; K_{aNH3+} = \frac{[SerNH_{2}] \cdot [H^{+}]}{[SerNH_{3}^{+}]_{protonēts}};$$

Prigogine attractor 7,36 value locates on $\Delta pH=1,36$ broad silence interval from 6 to 7,36.

2) Phosphate buffer H₂PO₄^{-/}/HPO₄²⁻; 7.36=pH=pK_a+log
$$\frac{[H P O_4^{2-}]}{[H_2 P O_4^{-}]}$$
 =7,199+log $\frac{1,45}{1}$ =7,36

3) Carbonic anhydrase (CA) driven – bicarbonate $2H_2O^{/CA/}CO_{2aqua} / H_3O^+ + HCO_3^-$ buffer

Three buffer systems sum in living organisms forms broadband buffer capacity maximum at bicarbonate protolytic constant value $pK_a=7,0512$ in range from pH=5 to pH=9.

Amino acids (proteins) broadband buffer system Cysteine Cys

$$K_{aCOOH} = \frac{[AA-COO^{-}]\cdot[H^{+}]}{[AA-COOH]_{nedis}}; K_{aNH3+} = \frac{[AA-NH_{2}]\cdot[H^{+}]}{[AA-NH_{3}^{+}]_{protonelis}}; K_{aRSH} = \frac{[R-CS^{-}]\cdot[H^{+}]}{[R-CSH]_{nedis}}; Buffer capacity strong acid Δn_{ac} or strong base Δn_{b} mol /Liter
Prigogine attractor 7,36 value included in five $\Delta pH=5,86$ units interval from 6,36 to 12,1
0.6
 $\frac{P-CM1=1M}{P-CM2=0.5M} - \frac{CM2=0.5M}{P-CM2=0.5M} - \frac{CM3=0.1M}{P-CM2=0.5M} - \frac{CM3=0.1M}{P-CM2=0.1M} - \frac{CM$$$

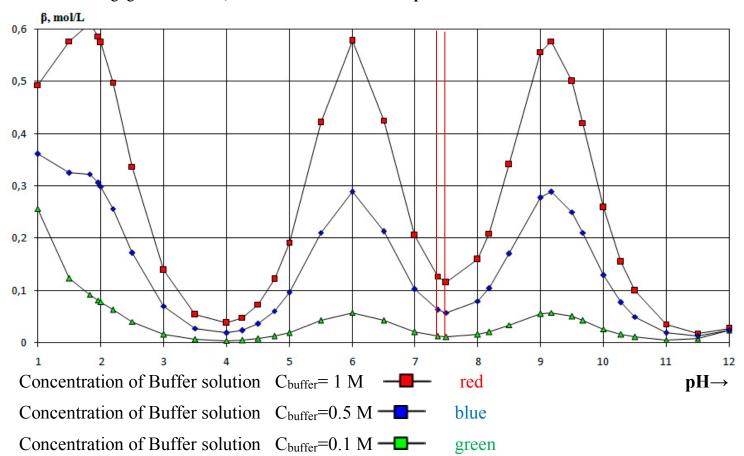
1 Buffer solution dilution dose no change value pH is constant as n_{salt}/n_{acid} = constant. the same for ten times diluted buffer n_{salt}/n_{acid} =const. amount ratio logarithm is log(1)=0!

- 1.a Water drinking in human organism pH=7,36 value do not change and not intact!
- **2.** Buffer capacity is proportional to concentration $\beta \sim C$!
- 3. Broadband buffer system capacity has tree maximal values β_{max} . Mark on graph !

$$pK_{aCOOH} = 1,96, K_{aNH3+} = 10,28, pK_{aRSH} = 8,18$$

- 4. Tree maximal values are $\beta_{max} = 0,6 \cdot C$ jo $\beta = 0,6 \cdot 1 \text{ mol}/_L = 0.6 \text{ ekv.mol}/_L$!
- 5. Buffer solution middle point pH=9,17 capacity against acid and base

are symmetric equal $\beta_{ac}=0.35 \text{ }^{\text{ekv.mol}}/\text{L}=\beta_{b}$,


adding strong acid $0,35 \text{ ekv.mol}/L \Delta pH=-1$ decreases about one unit,

adding strong base $0.35 \text{ }^{\text{ekv.mol}}/_{\text{L}} \Delta p H = +1$ increases about one unit!

Amino acids (proteins) broadband buffer system Histidine His

$$K_{aCOOH} = \frac{[AA-COO^{-}] \cdot [H^{+}]}{[AA-COOH]_{nedis}}; K_{aNH3+} = \frac{[AA-NH_2] \cdot [H^{+}]}{[AA-NH_3^{+}]_{proton\bar{e}ts}}; K_{aNH+} = \frac{[RN] \cdot [H^{+}]}{[RNH^{+}]_{proton\bar{e}ts}};$$

Buffer capacity strong acid $\Delta \mathbf{n}_{ac}$ or strong base $\Delta \mathbf{n}_{b}$ mol /Liter

Prigogine attractor 7,36 value included in seven $\Delta pH=7$ units interval from 4 līdz 11

1 Buffer solution dilution dose no change value pH is constant as n_{salt}/n_{acid} = constant. the same for ten times diluted buffer n_{salt}/n_{acid} =const. amount ratio logarithm is log(1)=0! 1.a Water drinking in human organism pH=7,36 value do not change and not intact!

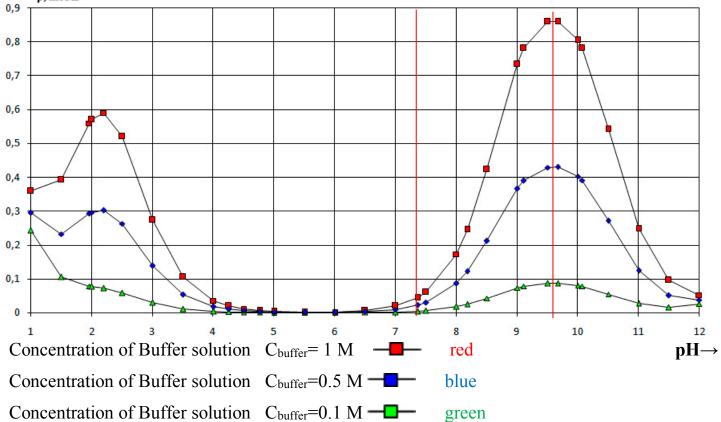
2. Buffer capacity is proportional to concentration $\beta \sim C$!

3. Broadband buffer system capacity has tree maximal values β_{max} . Mark on graph !

4. Tree maximal values are $\beta_{max} = 0,58 \cdot C$ jo $\beta = 0,58 \cdot 1^{\text{mol}/\text{L}} = 0.058^{\text{ekv.mol}/\text{L}}!$

5. Buffer solution middle point pH=7,5 capacity against acid and base

are symmetric equal $\beta_{ac}=0,12 \text{ ekv.mol}/L = \beta_b$,


adding strong acid $0,12 \text{ ekv.mol}/L \Delta pH=-1$ decreases about one unit,

adding strong base $0,12 \text{ }^{\text{ekv.mol}}/_{\text{L}} \Delta p H=+1$ increases about one unit!

Amino acids (proteins) broadband buffer system Tyrosine Tyr

$$K_{aCOOH} = \frac{[AA-COO^{-}] \cdot [H^{+}]}{[AA-COOH]_{nedis}}; K_{aNH3+} = \frac{[AA-NH_{2}] \cdot [H^{+}]}{[AA-NH_{3}^{+}]_{proton\bar{e}ts}}; K_{aRphenolOH} = \frac{[RfenolO^{-}] \cdot [H^{+}]}{[RfenolOH]_{nedis}}; Buffer capacity strong acid Δn_{ac} or strong base Δn_{b} mol /Liter$$

Prigogine attractor 7,36 value included in piecu $\Delta pH=4,5$ vienību intervālā no 7,5 maksimums 9,6 līdz 12 β , mol/L

1 Buffer solution dilution dose no change value pH is constant as n_{salt}/n_{acid} = constant. the same for ten times diluted buffer n_{salt}/n_{acid} =const. amount ratio logarithm is log(1)=0!

1.a Water drinking in human organism pH=7,36 value do not change and not intact!

2. Buffer capacity is proportional to concentration $\beta \sim C$!

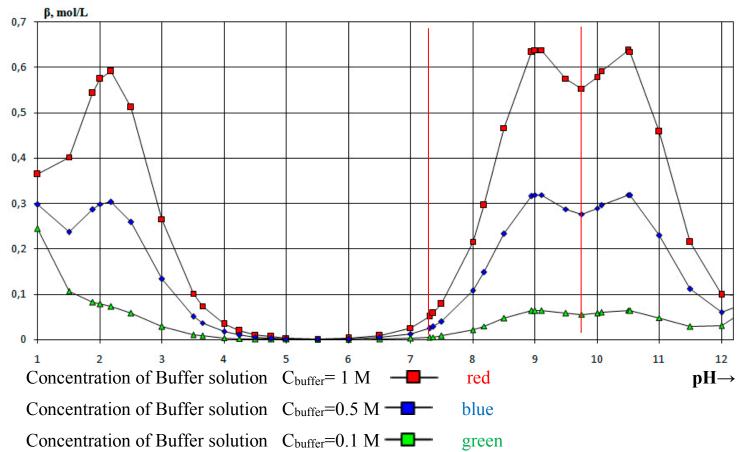
3. Broadband buffer system capacity has tree maximal values β_{max} . Mark on graph !

 $pK_{aCOOH} = 2,2, K_{aNH3+} = 9,11, K_{aRphenolOH} = 10,07$.

4. Maximum pH=9,6 value $\beta_{max}=0,86 \cdot C$, jo $\beta=0,86 \cdot 1 \text{ mol}/L=0.86 \text{ ekv.mol}/L$ maximal!

5. Buffer solution maximum pH=9,6 capacity against acid and base

are symmetric equal $\beta_{ac}=0.86 \text{ ekv.mol}/L = \beta_b$,


adding strong acid **0,86** $e^{kv.mol}/L \Delta pH=-1$ decreases about one unit,

adding strong base $0.86 \text{ }^{\text{ekv.mol}}/_{\text{L}} \Delta p H = +1$ increases about one unit!

Amino acids (proteins) broadband buffer system Lysine Lys

$$K_{aCOOH} = \frac{[AA-COO^{-}] \cdot [H^{+}]}{[AA-COOH]_{nedis}}; K_{aNH3+} = \frac{[AA-NH_{2}] \cdot [H^{+}]}{[AA-NH_{3}^{+}]_{proton\bar{e}ts}}; K_{aRNH3+} = \frac{[R NH_{2}] \cdot [H^{+}]}{[R NH_{3}^{+}]_{proton\bar{e}ts}};$$

Buffer capacity strong acid Δn_{ac} or strong base Δn_{b} mol /Liter

Prigogine attractor 7,36 value included in septiņu $\Delta pH=4,9$ vienību intervālā no 7,3 līdz 12,2

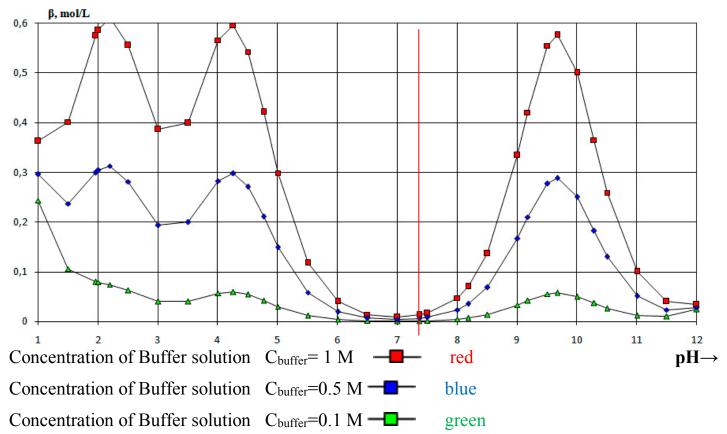
1 Buffer solution dilution dose no change value pH is constant as n_{salt}/n_{acid} = constant. the same for ten times diluted buffer n_{salt}/n_{acid} =const. amount ratio logarithm is log(1)=0! 1.a Water drinking in human organism pH=7,36 value do not change and not intact!

- **2.** Buffer capacity is proportional to concentration $\beta \sim C$!
- **3.** Broadband buffer system capacity has tree maximal values β_{max} . Mark on graph !

$$pK_{aCOOH}=2,18, K_{aNH3+}=8,95, pK_{aRNH3+}=10,53$$
.

- 4. Middle point pH=9,75 value is β_{max} =0,55•C , jo β =0,55•1 ^{mol}/_L=0.55 ^{ekv.mol}/_L !
- 5. Buffer solution middle point pH=9,75 capacity against acid and base

are symmetric equal $\beta_{ac}=0,12 \text{ ekv.mol}/L = \beta_b$,


adding strong acid 0,55 $^{\rm ekv.mol}/_{\rm L}$ ΔpH =-1 decreases about one unit,

adding strong base $0,55 \text{ }^{\text{ekv.mol}}/_{\text{L}} \Delta p H=+1$ increases about one unit!

Amino acids (proteins) broadband buffer system Aspartate Asp

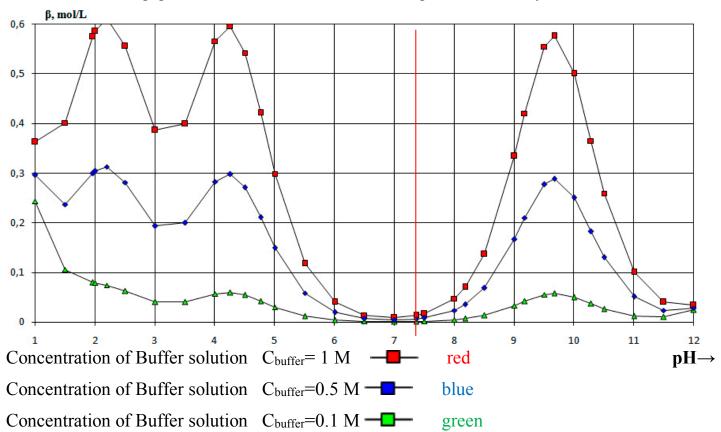
$$K_{aCOOH} = \frac{[AA-COO^{-}] \cdot [H^{+}]}{[AA-COOH]_{nedis}}; K_{aNH3+} = \frac{[AA-NH_{2}] \cdot [H^{+}]}{[AA-NH_{3}^{+}]_{proton\bar{e}ts}}; K_{aRCOOH} = \frac{[R-COO^{-}] \cdot [H^{+}]}{[R-COOH]_{nedis}};$$

Buffer capacity strong acid $\Delta \mathbf{n}_{ac}$ or strong base $\Delta \mathbf{n}_{b}$ mol /Liter

Prigogine attractor 7,36 value not included in aspartate buffer systems

1 Buffer solution dilution dose no change value pH is constant as n_{salt}/n_{acid} = constant. the same for ten times diluted buffer n_{salt}/n_{acid} =const. amount ratio logarithm is log(1)=0!

- 1.a Water drinking in human organism pH=7,36 value do not change and not intact!
- **2.** Buffer capacity is proportional to concentration β -C !
- **3.** Broadband buffer system capacity has tree maximal values β_{max} outside of Prigogine attractor 7,36. Mark on graph ! pK_{aCOOH} =1,88, K_{aNH3+} =9,6, K_{aRCOOH} =3,65.
- 4. Tree maximal values of $\beta_{max} = 0.55 \cdot C$ jo $\beta = 0.55 \cdot 1^{\text{mol}/\text{L}} = 0.55^{\text{ekv.mol}/\text{L}}!$
- **5.** Physiologic pH=7,36 not depends on aspartate buffer solution


are symmetrical equal $\beta_{ac}=0,0^{\text{ekv.mol}/L}=\beta_b$,

adding strong acid **0,0** $e^{kv.mol}/L \Delta pH=0$ does not have resistance as buffer capacity, adding strong base **0,0** $e^{kv.mol}/L \Delta pH=0$ does not have resistance as buffer capacity!

Amino acids (proteins) broadband buffer system Glutamate Glu

$$K_{aCOOH} = \frac{[AA-COO^{-}] \cdot [H^{+}]}{[AA-COOH]_{nedis}}; K_{aNH3+} = \frac{[AA-NH_{2}] \cdot [H^{+}]}{[AA-NH_{3}^{+}]_{proton\bar{e}ts}}; K_{aRCOOH} = \frac{[R-COO^{-}] \cdot [H^{+}]}{[R-COOH]_{nedis}};$$

Buffer capacity strong acid $\Delta \mathbf{n}_{ac}$ or strong base $\Delta \mathbf{n}_{b}$ mol /Liter

Prigogine attractor 7,36 value not included in glutamate buffer systems

1 Buffer solution dilution dose no change value pH is constant as n_{salt}/n_{acid} = constant. the same for ten times diluted buffer n_{salt}/n_{acid} =const. amount ratio logarithm is log(1)=0!

- 1.a Water drinking in human organism pH=7,36 value do not change and not intact!
- **2.** Buffer capacity is proportional to concentration β -C !

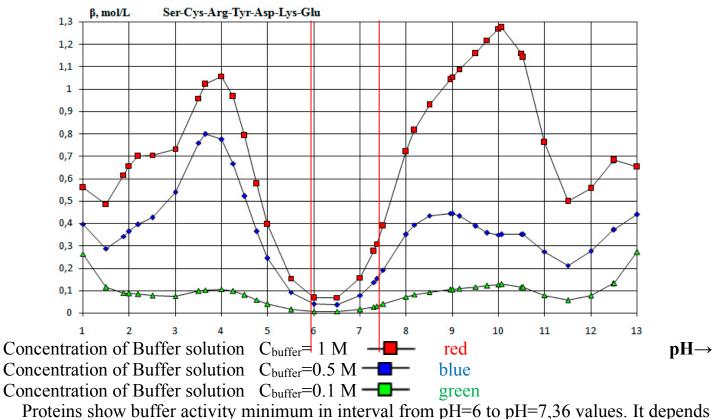
3. Broadband buffer system capacity has tree maximal values β_{max} outside of Prigogine attraktor 7,36. Mark on graph ! pK_{aCOOH} =2,19, K_{aNH3+} =9,67, K_{aRCOOH} =4,25.

4. Tree maximal values of $\beta_{max} = 0.55 \cdot C$ jo $\beta = 0.55 \cdot 1^{\text{mol}/\text{L}} = 0.55^{\text{ekv.mol}/\text{L}}$!

5. Physiologic pH=7,36 not depends on glutamate buffer solution

are symmetrical equal $\beta_{ac}=0,0$ ekv.mol/L = β_b , ,

adding strong acid **0,0** $e^{kv.mol}/L \Delta pH=0$ does not have resistance as buffer capacity, adding strong base **0,0** $e^{kv.mol}/L \Delta pH=0$ does not have resistance as buffer capacity!


Proteins have broadband buffer systems with activity minimum in range from 6 to 7,36. Human organism dominate bicarbonate and phosphate buffer systems. In organisms processes leed Prigogine attractor in direction pH=7,36. Carbonic anhydrase CA enzyme drive protolysis reaction by $pK_a=7,0512$ value and phosphate protolysis reaction by constant $pK_a=7,199$ value determines physiologic pH value 7,36 with alkaline reserve : 2/1 un 1,45/1 respectively.

Hepta peptide Ser-Cys-Arg-Tyr-Asp-Lys-Glu eight protolytic equilibria

pKa: 9,15, 8,18, 12,48, 10,07, 3,65, 10,53, 4,25, 2,19

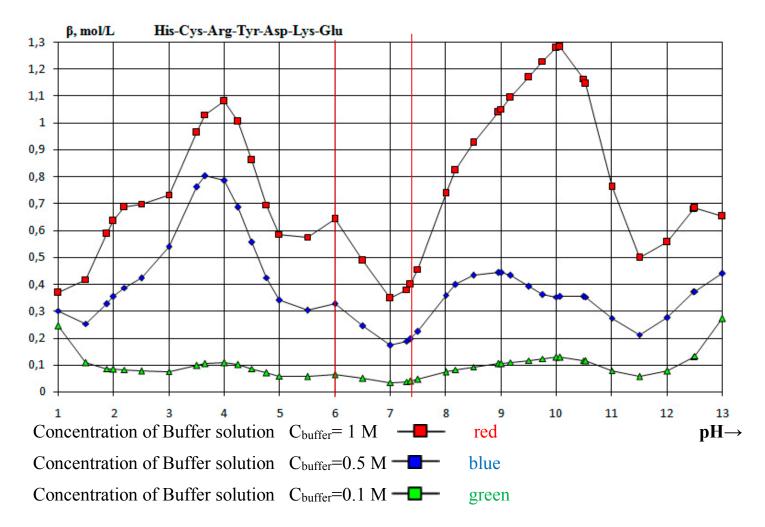
$$\begin{split} K_{aCOOH} &= \frac{[\textbf{Glu-COO^{-}]} \cdot [\textbf{H}^{+}]}{[\textbf{Glu-COOH}]_{nedis}} ; K_{aGluCOOH} &= \frac{[\textbf{Glu-COO^{-}]} \cdot [\textbf{H}^{+}]}{[\textbf{Glu-COOH}]_{nedis}} ; K_{aLysNH3+} &= \frac{[\textbf{LysNH}_{2}] \cdot [\textbf{H}^{+}]}{[\textbf{LysNH}_{3}^{+}]_{proton\bar{e}ts}}; \\ K_{aAspCOOH} &= \frac{[\textbf{AspOO^{-}]} \cdot [\textbf{H}^{+}]}{[\textbf{AspOOH}]_{nedis}} ; K_{aTyrFenolsOH} &= \frac{[\textbf{RfenolO^{-}]} \cdot [\textbf{H}^{+}]}{[\textbf{RfenolOH}]_{nedis}}; K_{aRArgNH+} &= \frac{[\textbf{ArgNH}] \cdot [\textbf{H}^{+}]}{[\textbf{ArgNH}_{2}^{+}]_{proton\bar{e}ts}}; \\ K_{aCysSH} &= \frac{[\textbf{R-CS^{-}]} \cdot [\textbf{H}^{+}]}{[\textbf{R-CSH}]_{nedis}} ; K_{aNH3+} &= \frac{[\textbf{SerNH}_{2}] \cdot [\textbf{H}^{+}]}{[\textbf{SerNH}_{3}^{+}]_{proton\bar{e}ts}}; \end{split}$$

Prigogine attractor 7,36 value included in $\Delta pH=1,36$ units interval from 6 to 7,36.

on twenty proteinogenic amino acids 47 protolytic constants, which are shown in table on

7th page: <u>http://aris.gusc.lv/BioThermodynamics/BufferSolution.pdf</u>.

Small rise at 7,36 from 7 to 7,36enhance resistence against adding acid.


Carbonic anhydrase CA enzyme drive protolysis reaction by $pK_a=7,0512$ value and phosphate protolysis reaction by constant $pK_a=7,199$ value determines physiologic pH value 7,36 with alkaline reserve : 2/1 un 1,45/1 respectively.

Hepta peptide His-Cys-Arg-Tyr-Asp-Lys-Glu nine protolytic equilibria

 $pK_a: 9,17, 6,00, 8,18, 12,48, 10,07, 3,65, 10,53, 4,25, 2,19$

$$\begin{split} K_{aCOOH} &= \frac{[\mathsf{Glu}\text{-}\mathsf{COO}^{-}]\cdot[\mathsf{H}^{+}]}{[\mathsf{Glu}\text{-}\mathsf{COOH}]_{nedis}} ; K_{aGluCOOH} &= \frac{[\mathsf{Glu}\text{-}\mathsf{COO}^{-}]\cdot[\mathsf{H}^{+}]}{[\mathsf{Glu}\text{-}\mathsf{COOH}]_{nedis}} ; K_{aLysNH3+} &= \frac{[\mathsf{Lys}\mathsf{NH}_{2}]\cdot[\mathsf{H}^{+}]}{[\mathsf{Lys}\mathsf{NH}_{3}^{+}]_{protonets}}; \\ K_{aAspCOOH} &= \frac{[\mathsf{Asp}\operatorname{OO}^{-}]\cdot[\mathsf{H}^{+}]}{[\mathsf{Asp}\operatorname{OOH}]_{nedis}} ; K_{aTyrFenolsOH} &= \frac{[\mathsf{Rfenol}\operatorname{O}^{-}]\cdot[\mathsf{H}^{+}]}{[\mathsf{Rfenol}\operatorname{OH}]_{nedis}}; K_{aRArgNH+} &= \frac{[\mathsf{Arg}\mathsf{NH}]\cdot[\mathsf{H}^{+}]}{[\mathsf{Arg}\mathsf{NH}_{2}^{+}]_{protonets}}; \\ K_{aCysSH} &= \frac{[\mathsf{R}\text{-}\mathsf{CS}^{-}]\cdot[\mathsf{H}^{+}]}{[\mathsf{R}\text{-}\mathsf{C}\mathsf{SH}]_{nedis}} ; K_{aRHisNH+} &= \frac{[\mathsf{His}\;\mathsf{N}]\cdot[\mathsf{H}^{+}]}{[\mathsf{His}\;\mathsf{N}\;\mathsf{H}^{+}]_{protonets}}; K_{aNH3+} &= \frac{[\mathsf{His}\;\mathsf{NH}_{2}]\cdot[\mathsf{H}^{+}]}{[\mathsf{His}\;\mathsf{NH}_{3}^{+}]_{protonets}}; \end{split}$$

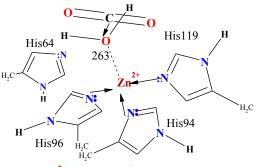
Prigogine attractor 7,36 value included in $\Delta pH=1,36$ units interval from 6 to 7,36.

Histidine do not have influence to phosphate and bicarbonate buffer systems , becouse joined in coordinative compounds with electron pair acceptor ions Zn^{2+} , Fe^{2+} , Fe^{3+} and at physiologic pH=7,36 histidine is deprotonated du to pK_a=6 value protonation preseeds only for smal values as pH< 6 in acidic medium.

Proteins have buffer activity minimum in range from pH=7 to pH=7,36 values. That determine twenty proteinogenic amino acids with 47 protolytic constants values, that given in table ob 7th page: <u>http://aris.gusc.lv/BioThermodynamics/BufferSolution.pdf</u>.

Brønsted Acid/Base CA and hemoglobin shuttle enzymes of $O_2 \Leftrightarrow HCO_3^- + H^+$

Enzyme **Carbonic anhydrase** (CA) made acid/base equilibrium H₂O^{-CA-}CO₂/HCO₃⁻ + H₃O⁺ There are shuttle buffer systems, that act in the human organism and allow pH of the organism to be


stabilized constant in narrow interval allowed changes ($pH = 7.36^{+0.02}_{-0.01}$) despite the fact, that organism

produces great amount of metabolic $[CO_{2Krebs}] = 0,0275$ M. The CA made amount of acidic products is $[H_3O^+] = [HCO_3^-] = 0,01695$ M compensated by buffer solution. CA buffer of blood are connected to shuttle hemoglobin captured proton H^+ by oxygen O_{2aqua} desorbtion due to Krebs product CO_{2aqua} target cells *in tissues*:

Hydrogen carbonate buffer system carbonic anhydrase equilibrium keeps weak acid CO2aqua and bicarbonate

ions at homeostasis normal amounts [HCO3⁻]=0.0154 M, [CO_{2aqua}]=0.0076 M, referring to 56,23 mL (50-60 mL) released volume CO₂ from 100 mL blood as *alkaline reserve* 2.036 / 1 in clinic evaluation.

Carbon dioxide forms by oxidation of carbohydrates, of fats and of proteins. Bicarbonate is created as product in hydration 2H₂O of CO_{2agua} by CA enzyme $\mathbb{Z}n^{2+}$ ion active coordination center. It's location in enzyme carbonic anhydrase \mathbb{Zn}^{2+} ion coordination pocket: $CO_{2aqua} + 2H_2O \rightleftharpoons CA(Zn^{2+}) \rightleftharpoons H_3O^+ + HCO_3^-$

 $H_{2}O+CO_{2agua}+(Zn^{2+}<=OH^{-}CA+H^{+})=>HCO_{3}^{-}+(H_{2}O(263)=>Zn^{2+}CA)+H^{+}$

 $Hb_{R}(O_{2})_{4}+4H^{+} \Leftrightarrow 4O_{2aqua} + (H^{+}His63,58)_{4}Hb_{T}$ stabilizing arterial concentration $[O_{2}]=6 \cdot 10^{-5}$ M in blood. Deoxy hemoglobin (\mathbf{H}^+ His63,58)₄Hb_T capture four protons 4 \mathbf{H}^+ at histidine residues and 4 HCO₃⁻ in venous hemoglobin form of erythrocytes deoxy (H⁺His63,58)₄Hb_T (Tense state). In lungs shuttle absorbs oxygen in arterial oxy hemoglobin (O_2 His63,58)₄Hb_R (Relax state) releasing 4 H⁺ and 4 HCO₃⁻.

1) First of four human buffer systems is enzyme CA made Brønsted Acid/Base endothermic equilibrium: $Q+CO_{2aqua}+2H_2O \leftarrow CA \rightarrow H_3O^++HCO_3^-$ which consume heat Q of Krebs cycle complexes exothermic reactions. Shift to right supported by high water $2H_2O$ concentration $[H_2O]^2 = (993, 36/18, 0153)^2 = 55, 139^2 = 3040, 4$ and by low stabilized pH=7,36±0,01 of hydrogen ions H_3O^+ concentration $[H_3O^+] = 10^{-7,36}$ M in products. $CO_{2 \text{Krebs}}$ as bicarbonate salt bridge linked HCO_3 ... H_3^+N and equal produced protons $[H^+]=[CO_{2Krebs}]=0,0275=[HCO_3^-]$ captures deoxy (H⁺His63,58)₄Hb_T shuttle and brings to *lungs*. *Lungs* evaporates $CO_2\uparrow_{gas}$ + H₂O \uparrow_{gas} endothermic $\Delta H_r = +54,5 \text{ kJ/mol}, \text{ but excergic } \Delta G_r = -82,1 \text{ kJ/mol}:$ $H_3O^+ + HCO_3^- + Q \leftarrow \stackrel{\text{Membrane}}{\longrightarrow} H_2O + CO_2 \uparrow_{\text{gas}} + H_2O \uparrow_{\text{gas}} + \Delta G_r.$

Symbol (H⁺His63,58)₄Hb_T to a Shuttle molecule of deoxy hemoglobin is inconvenient to write every time the complicated structure of hemoglobin. Deoxy hemoglobin is capturing and oxy hemoglobin completely deprotonated 4 H^+ and 4 HCO_3^- . Equilibrium is oxygen concentration $[O_2]=6.10^{-5}$ M sensitive:

 $4O_{2aqua} + (H^{+}His63,58)_{4}Hb_{T} \cdots s\bar{a}ls \cdots tiltini(HCO_{3})_{4} \Leftrightarrow Hb_{R}(O_{2})_{4} + 4H^{+} + 4HCO_{3}$. *lungs* and *tisues*. Lungs venous blood hemoglobin saturation with oxygen 459 times restore circulated arterial blood

 $[O_2]=6.10^{-5}$ M amount in one liter <u>O2Solutions.pdf</u> Adsorbed four $4O_{2aqua}$ (O₂His63,58)₄Hb_R+4H⁺+4HCO₃⁻ in products release four protons 4 H⁺ and bicarbonate ions 4 HCO₃⁻, promoting evaporation $CO_2\uparrow_{gas}+H_2O\uparrow_{gas}$ on *lungs* epithelia surface, and removing out of organism $[H^+]=459*6*10^{-5}=0.0275$ M amount $H^++H_2O=>H_3O^+$. that is equal to total by respiration evaporated $[CO_2\uparrow_{gas}] = 0.0275$ M amount.

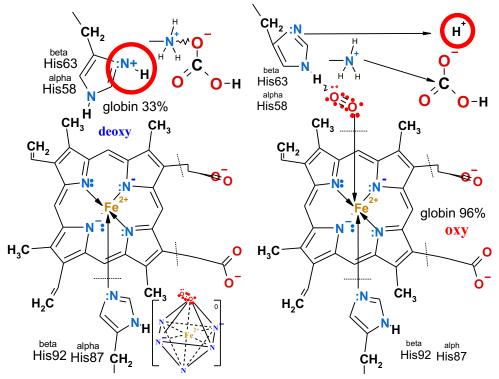
Shift to the left $(O_2His63,58)_4Hb_R+4H^++4HCO_3^-$ from deoxy captured shuttle $(H^+His63,58)_4Hb_T$ oxygen depending concentration $[O_2]=6 \cdot 10^{-5}$ M adsorbtion-desorbtion equilibrium explain pH stabilization at 7.36.

That explain, why pH is not changed, despite Krebs cycle acid CO_{2 aqua} product which involved in CA equilibrium. Henderson-Haselbalh homeostasis pH value expression leave the ratio[HCO₃]/[CO_{2aqua}]=2,0263 practicaly unchanged as intact both concentrations bicarbonate $[HCO_3^-]$ and carbon dioxide $[CO_{2aqua}]$:

$$7.36 = pH = pK + log([HCO_3]/[CO_{2aqua}]) = 7.0512 + log([HCO_3]/[CO_2])$$
 and anti logarithm is being

alkaline reserve $[HCO_3^-]/[CO_{2aqua}] = 10^{(pH-pK)} = 10^{(7.36-7.0512)} = 10^{0.3088} = 2,0361/1$. *Lungs* when in venous blood erythrocytes deoxy (H⁺His63,58)₄Hb_T (Tense) Shuttle hemoglobin by oxygen O_{2aqua} adsorbtion release of protons H^+ and HCO_3^- so in *Lungs* evaporates carbon dioxide $CO_2\uparrow_{gas}$ as breathed out in AIR.

In such a way two equilibria stabilize arterial oxygen concentration $[O_{2aqua}]=6.10^{-5}$ M with shuttle hemoglobin by oxygen adsorbtion-desorbtion and CA buffer system made value pH=7,36 with Krebs cycle drive the exchange metabolism of O_2 and CO_2 respiration to interface human body / environment.


Shuttle deoxy - oxy hemoglobin with Carbonic Anhydrase enzyme in O_2 , CO_2 metabolism stabilize physiologic pH=7.36 and oxygen arterial concentration $[O_{2blood}]=6\cdot10^{-5}$ M

I) Oxygen O_2 from AIR 20.95% $O_2\uparrow$ gas assimilation reaction dissolution in water to form O_{2aqua} exothermic ΔH_r =-11,7 ^{kJ}/_{mol} and endoergic ΔG_{sum} = 12,11 ^{kJ}/_{mol} as water soluble 1) O_{2AIR} +H₂O \Leftrightarrow H₂O+O_{2aqua} +Q+ ΔG . Concentration gradient [O₂]=9,768 · 10⁻⁵ M to venous blood [O₂]=1,85 · 10⁻⁵ M exoergic ΔG_{o2} = RTln([O_{2Blood}]/[O_{2aqua}])= - 4,29 ^{kJ}/_{mol} osmosis: 2) O_{2aqua} +H₂O^{Aquaporins} H₂O+O_{2aqua} + ΔG_{H2O} =RTln([H₂O]_{right}/[H₂O]_{left})= -1.088 ^{kJ}/_{mol} exoergic.

Sum is $\Delta G_{sum} = \Delta G_{02} + \Delta G_{H20} + \Delta G_r = +12,11 \text{ kJ/mol}$ endoergic at inspiration of fresh AIR but exothermic.

 $4O_{2aqua}$ from blood plasma adsorbs **deoxy** hemoglobin **Hb**_T releases four protons $4H^+$, $4HCO_3^-$ stabilizing arterial concentration $4O_{2aqua} + (H^+His63,58)_4Hb_T$ salt bridges $(HCO_3^-)_4 \Leftrightarrow Hb_R(O_2)_4 + 4H^+ + 4HCO_3^-$: $[O_2] = 6 \cdot 10^{-5}$ M and pH=7,36.

 $[O_{2Blood}]=6\cdot10^{-5}$ M concentration sensitive equilibrium (H⁺His63,58)₄Hb_T \leftrightarrow Hb_R(O₂)₄ shift to right regulates erythrocytes glycolysis metabolite BPG⁵⁻ as two phosphate 2,3-esters G⁻ H₂COPO₃²⁻-HCOPO₃²⁻-COO⁻ glycerate dihydroxy acid salt with homeostasis concentration [BPG⁵⁻]=5 mM, so BPG⁵⁻ pushed out of cavity to stabilize and store reserves 459 times higher as arterial blood concentration [O_{2Blood}]=6\cdot10⁻⁵ M amount [O_{2amount}]=459*6•10⁻⁵ M=0,02754 M.

 $[O_{2amount}]=459*6\cdot10^{-5} M=0,02/54 M.$ <u>O2Solutions.pdf</u>. Oxygen adsorbs by donor-acceptor bond on iron(II) Fe²⁺ in coordination center of heme and releases four protons H⁺ Hb_R(O₂)₄+4H⁺. Proton water sticks H⁺+H₂O \rightarrow H₃O⁺ forms hydroxonium ion. *In tissues* desorbed oxygen $[O_{2desobed}]$ restore oxygen concentration $[O_2]=6\cdot10^{-5}$ M in blood plasma 459 times and deoxy-hemoglobin capture four protons H⁺ (H⁺His63,58)₄Hb_T so keeps continuously pH=7,36±0,01.

Oxygen desorbed Krebs cycle converts to mitochondrial oxidative phosphorylation product CO_{2aqua}. II) pathway with carbonic anhydrase (CA) shift to right concentration gradient CO₂ produces amount 0,0339 M HCO₃⁻. Shuttle deoxy hemoglobin Hb_T capture [H⁺]=0,0275 M. So is stabilized constant pH=7,36±0,01 value.

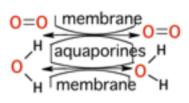
II) $Q_{aqua}+CO_{2aqua}+2H_2O \leftarrow CA \rightarrow H_3O^++HCO_3^- \leftarrow Membrane \rightarrow H_3O^++HCO_3^- \Leftrightarrow H_2O+H_2CO_3+Q_{gas} \leftrightarrow H_2O+CO_2\uparrow_{gas}+H_2O$. endothermic $\Delta H_r = +9.75 \ ^{kJ}/_{mol}$; athermic $\Delta H_r = 0 \ ^{kJ}/_{mol}$; exothermic $\Delta Hr = -9.76 \ ^{kJ}/_{mol}$; endothermic $\Delta H_r = +20.3 \ ^{kJ}/_{mol}$; endothermic $\Delta H_r = +20.3 \ ^{kJ}/_{mol}$; endothermic $\Delta G_r = +58.4 \ ^{kJ}/_{mol}$; exoergic $\Delta G_r = -22.5 - 1.96 \ ^{kJ}/_{mol}$;; exoergic $\Delta Gr = -58.2 \ ^{kJ}/_{mol}$; exoergic $\Delta G_r = -8.54 \ ^{kJ}/_{mol}$; II) $Q_{aqua} + CO_{2aqua} + 2H_2O \leftarrow CA \rightarrow H_3O^+ + HCO_3^- + Q \leftarrow Membrane \rightarrow H_2O + CO_2\uparrow_{gas} + H_2O\uparrow_{gas}$.

endothermic ΔH_r = +9.75 ^{kJ}/_{mol}; endothermic ΔH_r = +54,5 ^{kJ}/_{mol}; summary endothermic ΔH_r = +64,25 ^{kJ}/_{mol}; endoergic ΔG_r = +58.4 ^{kJ}/_{mol}; exoergic ΔG_r = -82,1 ^{kJ}/_{mol}; summary exoergic ΔG_r = -23,7 ^{kJ}/_{mol}; **Shuttle** is venous **deoxy Hb**_T, adsorbs four molecules 4O₂ from fresh AIR, acidify water medium with 4H⁺,

promoting CO_2 breathe out: Each H⁺ and HCO_3^- ion amount $[H^+]=459*6\cdot10^{-5}$ M =0,0275 M= $[HCO_3^-]$ shifts equilibrium to right H⁺ +HCO₃⁻+ Q \leftrightarrow H₂O +CO₂ \uparrow _{gas} via membrane channels. So pH=7,36 remains constant, as one bicarbonate ion and one hydrogen ion produce one CO₂ right side.

The epithelial cell surface of *lungs* has the specific building surface as square area is: S=950 nm x 950 nm= $0.9 \ \mu m^2$ on super thin 0.6 nm layer within water small volume: $0.5415 \cdot 10^{-3} \ \mu m^3 = 0.5415 \cdot 10^{-18}$ L. Created acidity in thin water layer volume increases up to pH=5.5 if one proton H⁺ crosses the membrane channels reaching the surface so hydrogen ion concentration is: $[H_3O^+]=10^{-pH}=10^{-5.5}$ M. Respiration of fresh AIR in lungs Hemoglobin released protons H⁺ during oxygen adsorbtion for total amount concentration:

 $[\mathbf{O}_{2adsorbed}] = [\mathbf{H}_{3}\mathbf{O}^{+}] = 459 * 6 \cdot 10^{-5} \text{ M} = 0,02754 \text{ M} \text{ forms hydrogen ion } [\mathbf{H}_{3}\mathbf{O}^{+}]_{right} / [\mathbf{H}_{3}\mathbf{O}^{+}]_{left} = 10^{-5.5} / 0,0275 \text{ concentration gradient, which drives exoergic } \Delta \mathbf{G} = -22,5 \text{ kJ}/_{mol} \text{ proton movement through epithelial cell membrane proton channels:} \\ \mathbf{H}_{3}\mathbf{O}^{+}_{left} \leftarrow \frac{\text{proton}_channel}{} \rightarrow \mathbf{H}_{3}\mathbf{O}^{+}_{right} + \Delta \mathbf{G}. \text{ General process } \mathbf{H}_{2}\mathbf{O} + \mathbf{CO}_{2}\uparrow_{gas} \text{ require heat supply endothermic } \Delta \mathbf{H} = 54,5 \text{ kJ}/_{mol} \text{ to drive spontaneous } \Delta \mathbf{G} = -82,0679 \text{ kJ/mol products evaporation } \mathbf{CO}_{2}\uparrow_{gas} \text{ and } \mathbf{H}_{2}\mathbf{O}\uparrow_{gas} \text{ keeping moisture } \mathbf{H}_{2}\mathbf{O} \text{ on surface of membrane. Hydrogen ions water acidity shift endothermic } \Delta \mathbf{H}_{r} = +54,5 \text{ kJ}/_{mol} \text{ and exoergic } \Delta \mathbf{G}_{r} = -82,1 \text{ kJ}/_{mol} \text{ decomposition } \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{HCO}_{3}^{-} \text{ breath out to } \text{ AIR } \mathbf{CO}_{2}\uparrow_{gas} \text{ with } \mathbf{H}_{2}\mathbf{O}\uparrow_{gas}:$


endothermic $\Delta H_r = +54,5 \text{ kJ}_{mol}$; $H_3O^+ + HCO_3^- + Q \leftarrow \underline{Membrane} \rightarrow H_2O + CO_2 \uparrow_{gas} + H_2O \uparrow_{gas} + \Delta G_r = -82,1 \text{ kJ}_{mol}$. exoergic.

Human shuttle hemoglobin-bicarbonate buffer system and Krebs cycle driven respiration from AIR O2 and breathed out CO2 action physiologic mechanism

Before we have to order three molecules involved in the buffer systems. The **shuttle oxy** hemoglobin, second is **carbonic anhydrase** CA with constant value pK=7.0512 and **shuttle deoxy** hemoglobin: **oxy** Hb_R(O₂)₄+ 4H⁺ <=> deoxy (H⁺His63,58)₄Hb_T + 4O_{2aqua}, where completely <u>deprotonated</u> 4 H⁺ oxy Hb_R but deoxy hemoglobin Hb_T <u>capturing</u> four protons 4 H⁺ and 4 HCO₃⁻ as desorbing four oxygen 4O_{2aqua} molecules.

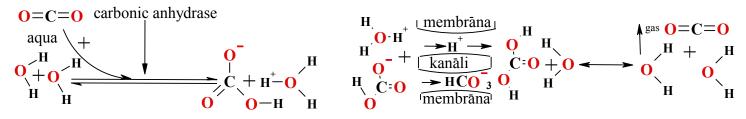
Shuttle and carbonic anhydrase CA stabilize exchange process from AIR O₂ to breathed out in to AIR CO₂.

Two I and II pathways are happen of <u>gradual</u> reactions: I) $O_{2AIR} + H_2O \stackrel{aquaporin}{\longleftarrow} H_2O + O_{2aqua}$

Process in lungsI) Pathway first reaction on cell wall membrane aquaporinspenetrating water H_2O with oxygen O_{2aqua} by rate 10^9 sec^{-1} reach erythrocyte cellsand oxygen concentration in blood plasma significant changes from venous blood $[O_2]=1,85 \cdot 10^{-5}$ M to arterial blood plasma in water becomes $[O_2]=6 \cdot 10^{-5}$ M.

Bisphospho glycerate **BPG⁵⁻** drive hemoglobin O_2 adsorbtion \Leftrightarrow desorbtion equilibrium sensitive to concentration. It saturates arterial **shuttle oxy** hemoglobin with oxygen 459 times over $[O_2]=6\cdot 10^{-5}$ M stored reserve 0,0275 M and pushed out of **shuttle deoxy** hemoglobin bisphospho glycerate **BPG⁵⁻** releases 4H⁺ and 4 HCO₃⁻.

 $4O_{2}+(H^{+}His63,58)_{4}betaVal1(NH_{3}^{+}PO_{4}^{2-})_{2}Hb_{T}G-\leftrightarrow(His63,58)_{4}Arg^{+}His^{+}betaVal1(NH_{3}^{+})_{2}Hb_{R}(O_{2})_{4}+4H^{+}+BPG^{5-}$


Each adsorbed oxygen molecules O_{2aqua} on hemoglobin releases proton H^+ which increases acidy on epithelial cell surface of *lungs*. The epithelial cell surface of *lungs* has the specific building: super thin 0.6 nm water layer on surface S=950 nm x 950 nm= 0.9 μ m² as square within small volume

 $0.5415 \cdot 10^{-3} \ \mu m^3 = 0.5415 \cdot 10^{-18} \ L$ in liters created acidity increases up to pH=5.5 if one proton crosses the membrane channel reaching the surface and that cause fast decomposition of carbonic acid H₂CO₃ to evolving CO₂↑ gas is breathed out to AIR.

II) pathway start from metabolic Krebs cycle oxidation with oxygen O_{2aqua} produces CO_{2aqua} in tissues cells:

 $\mathbf{Q}_{\text{aqua}} + \mathbf{CO}_{\text{2aqua}} + 2\mathbf{H}_{2}\mathbf{O} \leftarrow \overset{\text{CA}}{\longleftrightarrow} \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{H}_{2}\mathbf{O}_{3} - \overset{\text{membrane}}{\longleftarrow} \mathbf{H}_{2}\mathbf{O} + \mathbf{H}_{2}\mathbf{CO}_{3} + \mathbf{Q}_{(\text{gas})} \overset{\overset{\text{membrane}}{\longleftrightarrow}}{\longleftarrow} \mathbf{H}_{2}\mathbf{O} + \mathbf{CO}_{2}\uparrow_{\text{gas}} + \mathbf{H}_{2}\mathbf{O}_{3}$

Enzyme Carbonic Anhydrase (CA) drive to right equilibrium mixture in three <u>gradual</u> reactions <u>first is</u> endothermic: $\mathbf{Q} + 2\mathbf{H}_2\mathbf{O} + \mathbf{CO}_{2aqua} \xleftarrow{CA} \mathbf{H}_3\mathbf{O}^+ + \mathbf{HCO}_3^-$.

<u>Second gradual</u> exothermic reaction forms Carbonic acid $H^++HCO_3^-\rightarrow membrane}{} H_2CO_3+Q$. Proton H^+ and bicarbonate HCO_3^- through channels drive concentration gradients for $[H_3O^+]_{right}/[H_3O^+]_{left}=10^{-7.36}_{right}/0,0339$ and for bicarbonate ions $[HCO_3^-]_{right}/[HCO_3^-]_{left}=0,0154 \text{ M}_{right}/0,0339 \text{ M}_{left}$ breathing out of organism to AIR gas $CO_2\uparrow_{gas}$.

<u>Third gradual</u> reaction on *lung* epithelial cell surface (outside organism) with <u>absence</u> CA decomposes carbonic acid H_2CO_3 to gas $CO_2\uparrow_{gas}$ in endothermic reaction: $H_2CO_3 + Q(gas) \rightarrow H_2O + CO_2\uparrow_{gas}$. Heat supply is important for support the breathing out of organism.

Processes in tissues. As soon as the *arterial* blood reaches *tissues*, the following reactions occur.

Metabolic CO_{2aqua} product enzyme Carbonic Anhydrase (CA) converts to HCO₃⁻ bicarbonate and hydroxonium H_3O^+ ions according pH=7.36 *alkaline reserve* 2.036/1=[HCO₃⁻]/[CO₂]= 0,0339 M/0,01665 M. 1) Tissues blood oxygen concentration little decreases below $[O_{2aqua}]=6 \cdot 10^{-5}$ M arterial concentration. Oxygen concentration sensitive shuttle equilibrium (O_2 His63,58)₄Hb_R+4H⁺=>4 O_{2aqua} +(H⁺His63,58)₄Hb_T shifts right restoring 459 times arterial concentration $[O_{2aqua}]=6 \cdot 10^{-5}$ M level amount from reserves of oxy hemoglobin $(O_2 His 63, 58)_4 Hb_R$. Hemoglobin desorbing oxygen reach decreased venous blood level $[O_2]=1.85 \cdot 10^{-5}$ M in lungs.

Each desorbed oxygen replaces proton \mathbf{H}^+ at distal histidine His63,58 in hemoglobin (\mathbf{H}^+ His63,58)₄Hb_T (Tense state) and bind produced metabolic product HCO₃⁻ prevent acidity effect stabilizing pH=7.36 constant.

2) Krebs cycle metabolite CO_{2aqua} endothermic reaction with water in *tissues* drive carbonic anhydrase shift equilibrium to right $\mathbf{Q} + \mathbf{CO}_{2aoua} + 2\mathbf{H}_2\mathbf{O} \leftarrow \frac{\mathbf{CA}}{\mathbf{A}} \rightarrow \mathbf{H}_3\mathbf{O}^+ + \mathbf{HCO}_3^-$ forming ratio $1/2,0361 = [\mathbf{CO}_{2aoua}]/[\mathbf{HCO}_3^-]$. Enzyme Carbonic Anhydrase (CA) equilibrium shifts reaction towards bicarbonate anion to prevent of carbonic dioxide accumulation, according Le Chatelier's due to high water $[H_2O]$ concentration 55.3 M, low hydrogen cat ion concentration $[H_3O^+]=10^{-7.36}$ M, enzyme CA constant pK=7.0512 value as friendly for physiologic pH=7,36 value. CA absence out side human organism as isolated with cell membranes shifts to some fold more acidic as enough at pH=5,5 on the surface for spontaneous carbonic acid bubbling $Q + H_2CO_3 \rightarrow H_2O + CO_2\uparrow_{gas}$.

We follow full cycle of the process, going back the content of venous blood, that to know what mechanism of enzymes: carbonic anhydrase (CA) and shuttle molecules hemoglobin work in living organisms.

First, hemoglobin are **shuttles** molecules of oxygen $[O_{2aqua}]=6\cdot 10^{-5}$ M concentration sensitive equilibrium *in lungs* (O_2 His63,58)₄Hb_R +4H⁺ \rightarrow 4 O_{2aqua} + (H⁺His63,58)₄Hb_T stabilize arterial blood concentration to prevent deficiency (hypoxia) and avoid oxidative stress limiting oxygen concentration. Shuttle in tissues desorbs oxygen by proton replaces prevent acidose and stabilize pH=7,36. Shuttle in *lungs* adsorbs oxygen releasing protons on epithelial cell surface so keeping acidity pH=5,5 promote decomposition of carbonic acid out in AIR.

Second, enzyme CA equilibrium $H_2O/CA/CO_{2aqua}$ stabilize at pH=7,36 so prevent acidose. Evaporation: endothermic $\Delta H_r = +54,5 \text{ kJ/mol}; H_3O^+ + HCO_3^- + Q \leftarrow Membrane \rightarrow H_2O + CO_2 \uparrow_{gas} + H_2O \uparrow_{gas} + \Delta G_r = -82,1 \text{ kJ/mol}.$ exoergic. Equilibrium keep surface moisture H_2O be side breath out to AIR carbon dioxide $CO_2\uparrow_{gas}$ and water vapor $H_2O\uparrow_{gas}$. For moisture membrane proton channels are permeable \mathbf{H}^+ , unless proton \mathbf{H}^+ impermeable for dray channels. Therefore membrane is equipped by aquaporins, which are water and solute oxygen **O=O** permeable in both directions: $O=O+H_2O$ aquaporin channels $\Leftrightarrow H_2O+O=O$. AQP1 transfer rate is $3 \cdot 10^9$ per second.

For protons crossing the membrane I membrane through proton channels, necessary water molecules locate both side of the membrane and aquaporins are i membrane supplier of water H₂O molecules to moisture alveolar lungs surface. $(H^+)_4Hb_T + O_{2aqua} \leftrightarrow (O_2)_4Hb_R + 4H^+$ Inside the cell-cytosol ↓↑↔↓↑ CA with water consumes heat +Qmembrane $\mathbf{O} = \mathbf{C} = \mathbf{O}$ Н **O** · H⁺ $CO_2+2H_2O+O \leftarrow CA \rightarrow H_3O^++HCO_3^$ н channels ____ aqua exothermic $H_{3}O^{+} + HCO_{3}^{-} < =$ $= H_2CO_3 + H_2O + \Delta G$

Free energy change $\Delta G = -60 \text{ kJ}/\text{mol}$ for Reaction of H₂CO₃ formation is exoergic $\Delta G < 0$ negative therefore promotes spontaneous neutralization reaction $H_3O^++HCO_3^- <=>H_2CO_3^++H_2O^+\Delta G$ alveolar surface in lungs consuming +**O** heat and evolving water + H_2O supporting surface moisture $H_2CO_3+Q \implies CO_2\uparrow_{gas}+H_2O$ endothermic reaction

IV. BUFFER SOLUTIONS pH studies

1. Calculate pH of a formiate buffer (HCOOH/HCOONa), if the buffer is composed from 300 mL of 0.15 M HCOOH and 200 mL of 0.09 M HCOONa solutions, $K_{HCOOH}=2\cdot10^{-4}$

pH=pK_a+log
$$\frac{C_{salt} \bullet V_{salt}}{C_{acid} \bullet V_{acid}}$$
 = -log 2•10⁻⁴ + log $\frac{0.09 \bullet 200}{0.15 \bullet 300}$ = 3.7 - 0.398 = 3.3

2. Calculate pH of a buffer, composed from 80 mL 0.1 M NH₄OH and 120 mL of 0.17 M NH₄Cl solutions, K_{NH_4OH} =1.8 10⁻⁵.

pH=14 -pK_b+log
$$\frac{C_b \bullet V_b}{C_s \bullet V_s}$$
=14 -(-log 1.8•10⁻⁵) +log $\frac{0.1 \bullet 80}{0.17 \bullet 120}$ =14 -4.74 + log 0.39=9.26-0.41=8.85

3. Calculate, how many milliliters of 0.1 M HCOOH and of 0.2 M HCOONa have to be taken to obtain a buffer, having pH = 3.0 and total volume 1 liter, $K_{HCOOH} = 2 \cdot 10^{-4}$.

When writing pH equation for this case, volume of salt can be named x and then the volume of acid in this

case is (1000-x) mL: 3.0 = -log 2•10⁻⁴ + log
$$\left(\frac{0.2x}{0.1(1000 - x)}\right)$$

 $3.0 = 3.7 + log \left(\frac{0.2x}{0.1(1000 - x)}\right)$
 $log \left(\frac{0.2x}{0.1(1000 - x)}\right) = -0.7 \rightarrow \left(\frac{0.2x}{0.1(1000 - x)}\right) = 10^{-0.7} = 10^{-0.7}$

0.199

0.2x = 0.199(100 - 0.1x); 0.2x + 19.9 = 0.0199x 0.2199 x = 19.9 ; x = 90,5 mL $V_{salt} = x = 90.5 mL ;$ $V_{acid} = 1000 - x = 909.5 mL$

4. Calculations of buffer capacity (see theory in the next chapter).

Calculate the pH change and buffer capacity, observed when 10 mL of 0.5 M NaOH are added to a buffer system, composed of 100 mL of 0.2 M NaHCO₃ and 200 mL of 0.3 M Na₂CO₃, K_{HCO_3} ⁻⁼ 4.69 · 10⁻¹¹

a) **pH** before addition of **NaOH** is:

pH₁= -log 4.69•10⁻¹¹ +log $\frac{0.3 • 200}{0.2 • 100}$ =10.32 + log 3 =10.8

b) addition of NaOH causes a reaction : NaOH + NaHCO₃ => Na₂CO₃ + H₂O as the number of moles of NaOH is $n = 0.01 \cdot 0.5 = 0.005$, the number of moles of Na₂CO₃ increases by 0.005 moles and the number of moles of NaHCO₃ decreases by 0.005 moles. The number of moles of salt (Na₂CO₃) in the initial buffer was $n_{salt} = 0.2 \cdot 0.3 = 0.06$ moles

The number of moles of acid in initial buffer was (acid is NaHCO₃ here) : $n_{acid} = 0.1 \cdot 0.2 = 0.02$ moles thus, after the addition of NaOH pH becomes:

$$pH_2 = -\log 4.69 \cdot 10^{-11} + \log \frac{0.06 + 0.005}{0.02 - 0.005} = 10.32 + \log 4.33 = 10.97$$

c) buffer capacity of the solution is found as:

$$\beta = \frac{n_{NaOH}}{\Delta pH \bullet V_{buffer}} = \frac{0.05}{(10.97 - 10.8) \bullet (0.1 + 0.2)} = 0.98 \text{ mol/L}$$

Buffer System studies by numerical Experiment

Let us prove, that buffer capacity depends on the concentration of buffer solution.

To do this, let us compare the buffer capacities of two solutions, having the same acid/salt ratio, but different total concentrations.

If we add the same amount of HCl 1 milli equivalents (meg) of HCl to two different buffer solutions, one having 200 meg of acetic acid and 200 meg of sodium acetate, other having 20 meg acetic acid and 20 meg of sodium acetate in 1 liter of the buffer, the buffer capacities will be as follows.

a) The initial pH of both buffer solutions will be the same: $\mathbf{pH} = \mathbf{pK}_{CH_{3}COOH}$:

$$pH_1 = pK_{CH_3COOH} + log \frac{200}{200} = pK_{CH_3COOH} + log \frac{20}{20} = 4,74 - 0 = 4,74 \text{ (as log 1 = 0)}$$

In both of these buffer solutions, if HCl is added, it will react with the salt :

HCl + CH₃COONa => CH₃COOH + NaCl

b) as 10 meg of HCl are added, n_{salt} decreases for 1 meg and n_{acid} increases for 1 meg. The pH values after the addition of HCl will be:

In the more concentrated buffer system :

 $pH_2 = pK_{CH_3COOH} + \log \frac{200 - 1}{200 + 1} = 4,74 + \log \frac{199}{201} = 4,74 + \log 0,9900 = 4,74 + (-0,00434) = 4,73566$

In the more diluted buffer system :

$$pH_2 = pK_{CH_3COOH} + \log \frac{20 - 1}{20 + 1} = 4,74 + \log \frac{19}{21} = 4,74 + \log 0,90476 = 4,74 + (-0,0434) = 4,69653$$

c) The **pH** change will be $\Delta pH = pH_1 - pH_2$:

in ten times more concentrated system: $\Delta pH = 4.74 - 4.73566 = 0.00434$

in ten times more diluted system: $\Delta pH = 4.74 - 4.69653 = 0.0434$

d) The buffer capacities against acid will be :
$$\beta_{ac} = \frac{\Delta n_{HCl}}{\Delta p H \cdot V_{buffer}}$$

in ten times more concentrated solution: $\beta_{ac} = \frac{1 \text{ekv} \cdot \text{mmol}}{0.00434 \cdot 1000 \text{mL}} = 0.23 \text{ eq} \cdot \text{mol} / \text{L}$

in ten times more diluted solution :

$$\beta_{ac} = \frac{0.00434 \bullet 1000 \text{mL}}{0.0434 \bullet 1000 \text{mL}} = 0.023 \text{ eq} \cdot \text{mol} / \text{L}$$

As we could see from the results of calculation, the buffer capacity of buffer system is

proportional to concentration at C' = 200 meq/L β_{ac} = 0.23 eq•mol /L and for

ten times diluted concentration C' = 20 meq/L β_{ac} = 0.023 eq•mol /L.

Research the "middle point" of buffer system 2

Let us prove, that, if the salt/acid ratio in a buffer solution is 1:1, acid and base are equal. The more concentrated solution of the previous example will be used for this, therefore the initial pH value is the same 4.74 and after addition of 1 meq HCl :

$$pH_1 = pK_{CH_3COOH} + \log \frac{200 - 1}{200 + 1} = 4,74 + \log \frac{199}{201} = 4,74 + \log 0,9900 = 4,74 + (-0,00434) = 4,73566$$

If a strong base, for example, **KOH** is added to the buffer system, it will react with the acid of buffer system and more salt will be produced : KOH + CH₃COOH => CH₃COOK + H₂O

If 1 meg of KOH are added, n_{acid} will decrease for 1 meg and n_{salt} will increase for 1 meg, hence, the pH after addition of KOH will be:

$$pH_2 = pK_{CH_3COOH} + \log \frac{200 + 1}{200 - 1} = 4.74 + \log \frac{201}{199} = 4.74 + \log 1,01 = 4.74 + 0.00434 = 4.74434$$

now the pH change against the acid HCl is $\Delta pH_1 = 4.74 - 4.73566 = 0.00434$ now the pH change against the base KOH is $\Delta pH_2 = 4.74434 - 4.74 = 0.00434$ and $\beta_{\text{base}} = (1 \text{ meq}) / (0.00434 \cdot 1000 \text{ mL}) = 0.23 \text{ eq} \cdot \text{mol/L},$

which is the same value, that was previously calculated for $\beta_{acid} = 0.23$ eq•mol/L.

Experimental Study of Buffer System with Alkaline Reserve

Let us prove, that in a buffer solution, containing the same total number of equivalents of acid and base, but having the salt/acid ratio other than 1:1, a_{cid} and b_{ase} are not any more equal to each other and that both of them are smaller, than in a solution, having acid/salt ratio, equal to 1:1.

For example, let us choose a buffer solution, containing 200 meq of CH_3COOK and 20 meq CH_3COOH . The summary number of equivalents is 200 + 20 = 220, approximately the same, than in the more concentrated buffer from example 1 (where 200 meq CH_3COOK and 200 meq CH_3COOH).

Initial **pH** value of this chosen buffers solution is:

$$pH = pK_{CH_{3}COOH} + \log \frac{200}{20} = 4,74 + \log 10 = 4,74 + 1 = 5,74$$

If 1 meq HCl are added, n_{salt} decreases for 1 meq and n_{acid} increases for 1 meq, therefore after acid addition:

 $pH_{1}=pK_{CH_{3}COOH}+log\frac{200-1}{20+1} = 4,74 + log\frac{199}{21} = 4,74 + log 9,4765 = 4,74 + 0,9766 = 5,7166$ $pH_{1}=pH_{1}-pH = 5.7166 - 5.74 = 0.023 \text{ ; and } \beta_{ac} = \frac{\Delta n_{HCl}}{\Delta pH \bullet V_{bufer}} = \frac{1eq \bullet mmol}{0,023 \bullet 1000mL} = 0,0430 \text{ eq} \cdot mol/L$

If 1 meq of KOH are added to the same buffer solution, KOH reacts with acetic acid, n_{acid} decreases for 1 meq and n_{salt} increases for 1 meq. After the addition of KOH the pH value will be : $pH_2=pK_{CH_3COOH}+log \frac{200+1}{20-1}=4,74+log \frac{201}{19}=4,74+log 10,5789=4,74+1,02444=5,76444$

$$\Delta pH_2 = pH_2 - pH = 5,76444 - 5.74 = 0.02444 \text{ and } \beta_b = \frac{\Delta n_{KOH}}{\Delta pH \bullet V_{bufor}} = \frac{1 eq \bullet mmol}{0,02444 \bullet 1000 mL} = 0,0409 eq \bullet mol/L$$

Comparing $\beta_{acid} = 0,0430$ eq•mol /L and β_{base} , = 0,0409 eq•mol /L one can see, that the buffer capacity of this buffer system against acid is greater, than against base. This is a logical result, because the reserve of salt (salt reacts with added acid) is much greater, than the reserve of the buffer acid (buffer acid reacts with added base).

Comparing the buffer capacities of this solution to the buffer capacities of a solution, containing 200 meq salt and 200 meq acid (from example 1 $\beta_{ac} = 0,23$ eq•mol; $\beta_b = 0,23$ eq•mol), one can see, that both values are much smaller for the buffer system, in which salt/acid ratio differs from "middle point" of buffer system 1:1.

Research of Buffer System with low Alkaline Reserve 4

If we calculated buffer capacities of a solution, containing **20** meq salt and **200** meq acid, we would find out, that the values are the same, than in previous example, but they are replaced by each other: now $\beta_{acid} = 0,0409$ eq•mol/L and $\beta_{base} = 0,0430$ eq•mol/L. This also easy to understand, because in this case the alkaline reserve of salt is small and therefore the capacity against acid is lower, but the reserve of acetic acid is great and therefore the capacity against base is high.

In the biological bodies buffera solutions **alkaline reserve** always exceeds the acids, that has the sense to work against the metabolic production of acids (acetic acid, formic acid, pyruvic acid, lactic acid, glycerin acids, malic acid, successinic acid, citric acid and wastes of fatty acids like as palmitic acid, butyric acid, stearic acid and so on more other).