The <u>Water channels</u>, allow the <u>passive</u> but <u>selective</u> movement of <u>Water</u> and <u>O₂,NO,CO</u> across cell wall and subcellular membranes like as <u>mitochondria</u>, <u>endoplasmic reticulum</u>, <u>peroxisomes</u>, <u>Golgi</u>, <u>lysosomes</u>..... Aquaporins have been classified into two sub-families:

I) strict Aquaporins that only allow the passage of Water, O_2 , NO, CO and II) the <u>less</u> <u>selective</u> aquaglyceroporins that transport Water and other neutral solutes, such as Glycerol, CO_2 or urea.

Recently, the identification and characterization of a number of archaeal and bacterial **Aquaporins** suggested the existence of a **third** sub-family; one that is neither a strict **Aquaporin** nor an **aquaglyceroporin**. The function and phylogeny of this **third** family is still a matter of debate.

Water channels H₂O common O₂, NO, CO: an overview

AQP0	+ C , NO ³⁻ eye-lens <u>cells</u> ; thin junctions between fiber <u>cells</u>
	AQP0 with a measured Water permeability <u>15-fold lower</u> than that of AQP1 at <u>pH 6.5</u> ;
	AQP0 is <u>reduced</u> a further <u>three fold at pH 7.5</u>
	AQP0 induce a gating effect <u>close</u> conformations of <u>extracellular loop A Met176, His40</u> AQP0 becomes more
	constrained near the conserved Ar/R constriction <u>site</u>
	+ Cl ⁻ , NO ₃ ⁻ , <u>Aquaglyceroporins</u> : red blood cell (RBC),
AQP1-	apical & basolateral membranes of epithelial brain cell, rodent brain cell
	AQP1-null humans kidney proximal-tubule water reabsorption
	gastrointestinal tract Water absorption in the teleost intestine
	the ovary and in the oocyte ; salivary gland ;
AQP2	urinary bladder granular kidney <u>cells</u> & subcellular
	vasopressin regulated urine concentration (25% of the blood filtrate)
	trans located from the cytoplasmic pool to the apical plasma membrane
	of the granular cells of the pelvic patch and urinary bladder
	+Aqua glycero porins, urea: gastrointestinal tract Water absorption; rodent brain cell astrocyte end-feet
1002	Water enters in the principal cell through AQP2 and exits through located in the basolateral membranes
AQP3	trachea basal AOP3 & ciliated columnar AOP4 cells
AOP4	Rodent -brain; basolateral membrane of ciliated columnar cells alveolar epithelium; salivary gland
	stomach, duodenum, pancreas, airways, lungs, salivary gland, sweat glands, eyes, lacrimal glands, and the inner
AOP5	ear tears & pulmonary sub mucosal glands secretions apical membrane rodent brain cells
	+ Cl^- , NO ₃ ⁻ multi permeable channel: lens cells: may play a role in the body acid-base homeostasis
AOP6	in the intracellular vesicles of acid-secreting intercalated cells of the RCD colocalized with the H^+ -ATPase
	be Hg^{2+} -inhibit able Water channel function is activated by Hg^{2+} and low pH
AQP7	+ Aquaglyceroporing urea: kidney proximal tubule epithelium cell
	glycerol reabsorption : together with AOP1 in the brush border
	in the concentration of urine taking place in the proximal nephron
	75% of the blood filtrate which is 150–180 L per day
	\mathbf{NH}_{4}^{+} : lens & kidney intracellular proximal tubule & small intestine absorptive: epithelium cell
AOP8	in the concentration of urine taking place in the proximal nephron also in mitochondria
	75% of the blood filtrate which is 150–180 L per day & rodent brain cell
	+Aquaglyceroporting urea purines pyrimidines & monocarboxylates argenite
AQP9	apical membrane of brain & small intestine absorptive epithelial & rodent brain & glial cells
AOP10	+ Aquaglyceroporting urea small intestine absorptive epithelial cells
AOP11	"super aquaporins" or sub cellular kidney cytoplasm of the proximal tubule & rodent brain cells
AOP12	"super aquaportins" or sub cellular H_2O Channel is roughly 20-Å long and has a diameter 1.1 Å Water
<u></u>	the membrane share a shared protoing (WCDSs) are trans membrane protoing that have a specific
0=0	$\bigcup_{i=1}^{n} \bigcup_{j=0}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i$
, H	aquaporines H three-dimensional structure with a pore the SF radius 1.1 A is close average
o	$ -20\dot{A} $ to radius of water H–O–H longitudinal 1.4 A and 0.55 A bent size of dipole.
` \`	$\overset{\bullet}{\longrightarrow}$ It can be permeated by Water & O ₂ , NO, CO molecules as solutes.
Н	H Aquaporins are large families (over <u>450 members</u>) that are present <u>in all</u>
bilipid	membrane cross size <u>kingdoms of life</u> . Water permeability, allowing permeation of 3×10^9 water
55Å	molecules per monomer per second AQP 1 and other, which strictly prevents

the conduction of protons H⁺. Serine, Tyrosine, Threonine mbrane trafficking of AQP1, AQP2, AQP5, and AQP8, and the gating of AQP4.

Phosphorylation to trigger the me

Cation conductance has been <u>induced</u> in **AQP**1 by activation of <u>cyclic **GMP**-dependent</u> pathways and was <u>blocked</u> by Hg^{2+}

Red blood cells against colligative osmomolar concentration in water solutions

Water and oxygen osmosis against osmo molar concentration gradient crosses cell membranes

Osmosis is organised for H_2O and O_2 movement against concentration gradients-difference of colligative properties $\Delta C_{osm} = i\Delta C_M$ through an Aquaporins across cell membranes to form the osmotic pressure: $\pi = i\Delta C_M RT (kPa)$,

where $R=8,3144 \text{ J/(mol}\cdot\text{K})$ universal gas constant, T temperature in Kelvin's degree (K) $T=t^{+}273.15$ (if $t=37^{\circ}$ than $T=37^{\circ}+273.15=310.15$ K).

Note: Transfer water and oxygen molecules through membrane aquaporin tunnel in erythrocytes with rate $3 \cdot 10^9$ sec⁻¹ in both directions transfer 3000 oxygen molecules in one second.

Mechanism of osmosis through membrane aquaporins drive colligative concentration gradient

 $Na^+Cl^- => Na^+ + Cl^- m = 2$ electrolyte dissociation $\alpha = 1$ the concentration gradient doubled as i is 2 $i=1+\alpha(m-1)=1+1(2-1)=2$; $i\Delta C_M = 2\Delta C_M = \Delta C_{osm}$ and pressure on membrane is $\pi = 2\Delta C_M RT = \Delta C_{osm} RT$.

 $Press \Rightarrow on membrane to right.$

Water $H_2O_1O_2$ oxygen flow left side against the concentration gradient from 0 to C_{osm}=0.305 M because Na⁺Cl⁻ ions make osmo molar concentration left side C_{left} - C_{right} = C_{osm} -0= C_{osm} = iC_M and <u>close</u> H_2O , O_2 flow to right side.

 $C_{blood} = C_{osm} = i_1C_1 + i_2C_2 + i_3C_3 + \dots = \Sigma i_kC_k = 0,305 \text{ M}$

Human erythrocytes red blood cells with osmo molar concentration 0.305 M of all solutes sum $\Sigma i_k C_k$: C_{blood} glucose, salts, hydroxonium H_3O^+ , hydroxyl OH^- ions, amino acids, proteins, bicarbonate etc.

Isotonic medium $C_{blood} = 0.305 \text{ M}$

Hypotonic medium distilled water 0 M or at least

Hypertonic solution $C_{\text{Hyperton}} \ge 0.4 \text{ M}$. Hypertonic salt solutions to

apply foe purulent wounds, because pumps water toxic compounds out and stimulates blood circulation.

Osmosis H_2O and O_2 against concentration gradient through alveolar epithelial membrane

A) Oxygens O_2 from AIR 20.95% O_2 gas assimilation reaction dissolution in water to form O_{2aqua}

exothermic ΔH_r =-55,7 kJ/mol and exoergic ΔG_r = -27,7 kJ/mol as water soluble oxygen :

Hypotonic water medium the flow is greater towards the cell against the

concentration gradient-difference 0.305 - 0.2=0,105 M and the cell puffs up

until its membrane is broken but content leak in plasma.

1) $O_{2AIR}+H_2O \Leftrightarrow H_2O+O_{2aqua}+Q+\Delta G$. Penetrate in Human body through aquaporins by concentration gradient from $[O_2]=9,768 \cdot 10^{-5}$ M to venous blood $[O_{2aqua}]=0,426 \cdot 10^{-5}$ M.

2) $\Delta GO_2 = RTln([O_{2Blood}]/[O_{2aqua}]) = -4,29 \text{ kJ/mol}$ exoergic entrance human organism;

3) $O_{2aqua} + H_2 O \xrightarrow{Aquaporins} H_2 O + O_{2aqua} + \Delta G$ against concentration gradient 0,305 M / 0,2 M:

 $\Delta GH_2O = RTln([H_2O]_{right}/[H_2O]_{left}) = -8,3144*310,15*ln(0,305/0,2) = -1.088 \text{ kJ}/_{mol}$

exoergic $\Delta G O_{2+} = -5,379^{kJ}/mol.$ Deoxy hemoglobin Hb_T adsorbs 4 O_{2aqua} from blood plasma of inspired fresh AIR releases four protons $4H^+$ and $4 HCO_3^-$ stabilizing arterial $[O_2]=6 \cdot 10^{-5}$ M concentration $4O_{2aqua} +$ $(\mathbf{H}^{+}\mathrm{His}63,58)_{4}\mathbf{Hb}_{T} \Leftrightarrow \mathbf{Hb}_{R}(\mathbf{O}_{2})_{4}+4\mathbf{H}^{+}$.

Total exothermic $\Delta H_r = -55.7 \text{ kJ}_{mol}$ and exoergic $\Delta GO_2 = -27.7 + -4.29 + -1.088 = -33.078 \text{ kJ}_{mol}$

Osmosis is **water** and oxygen flow left side against gradient of concentration 0.2 M to C_{osm} =0.305 M because water and oxygen flow to right side closed by made left side osmo molar C_{left} - C_{right} = C_{osm} - C_{osm_right} = ΔC_{osm} concentration as difference ΔC_{osm} =0.105 M. C_{osm} = i_1C_1 + i_2C_2 + i_3C_3 +...= Σ i_kC_k =0,305 M; C_{osm_right} =0,2 M; ΔC_{osm} =0.305–0.2=0.105 M

B)

Breath out H_2O , CO_2 in endothermic but excergic reactions on alveolar epithelial surface

 $\mathbf{Q}_{aqua} + \mathbf{CO}_{2aqua} + 2\mathbf{H}_{2}\mathbf{O} \xleftarrow{\mathbf{CA}} \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{HCO}_{3} \xleftarrow{\mathbf{Membrane}} \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{HCO}_{3} \Leftrightarrow \mathbf{H}_{2}\mathbf{O} + \mathbf{H}_{2}\mathbf{CO}_{3} + \mathbf{Q}_{gas} \leftrightarrow \mathbf{H}_{2}\mathbf{O} + \mathbf{CO}_{2}\uparrow_{gas} + \mathbf{H}_{2}\mathbf{O}.$ endothermic $\Delta \mathbf{H}_{r} = 9.75 \text{ kJ}_{mol}$; athermic $\Delta \mathbf{H}_{r} = 0 \text{ kJ}_{mol}$; exothermic $\Delta \mathbf{H}_{r} = -9.76 \text{ kJ}_{mol}$; endothermic $\Delta \mathbf{H}_{r} = 20.3 \text{ kJ}_{mol}$; endoergic $\Delta \mathbf{G}_{r} = 58.4 \text{ kJ}_{mol}$; exoergic $\Delta \mathbf{G}_{r} = -22.5 - 1.96 \text{ kJ}_{mol}$; exoergic $\Delta \mathbf{G}_{r} = -58.2 \text{ kJ}_{mol}$; exoergic $\Delta \mathbf{G}_{r} = -8.54 \text{ kJ}_{mol}$;

B) $Q_{aqua}+CO_{2aqua}+2H_2O \leftarrow CA \rightarrow H_3O^++HCO_3^- +Q \leftarrow Membrane \rightarrow H_2O+CO_2\uparrow_{gas}+H_2O\uparrow_{gas}$. endothermic $\Delta H_r=9.75 \text{ kJ}/_{mol}$; endothermic $\Delta H_r=54,5 \text{ kJ}/_{mol}$; summary endothermic $\Delta H_r=64,25 \text{ kJ}/_{mol}$; endoergic $\Delta G_r=58.4 \text{ kJ}/_{mol}$; exoergic $\Delta G_r=-82,1 \text{ kJ}/_{mol}$; summary exoergic $\Delta G_r=-23,7 \text{ kJ}/_{mol}$;

Venous **deoxy Hb_T shuttle** adsorbs four **oxygen** $4O_{2Hb}$ molecules, create $4H^+$, promoting CO_2 breathe out as increase production of H^+ , $HCO_3^- 473*6\cdot10^{-5}$ M=0,0284 M=[HCO_3^-]=[H^+] amounts shifts equilibrium to right $H^+ + HCO_3^- + Q \leftrightarrow H_2O + CO_2\uparrow_{gas}$ via membrane channels. So pH=7,36 remains constant, as bicarbonate ion and hydrogen ion produce CO_2 right side.

The epithelial cell surface of *lungs* has the specific building. S=950 nm x 950 nm= 0.9 μ m² is surface area with super thin 0.6 nm water layer volume: 0.5415•10⁻³ μ m³ = 0.5415•10⁻¹⁸ L. Created acidity in thin water layer volume increases up to pH=5.5 if one proton H⁺ crosses the membrane channels reaching the surface. Hydrogen ion concentration is: [H₃O⁺]=10^{-pH}=10^{-5.5} M. Respiration in *lungs* Hemoglobin released protons H⁺ during oxygen adsorbtion for total amount concentration:

 $[\mathbf{O}_{2Hb}] = [\mathbf{H}_3\mathbf{O}^+] = 473*6 \cdot 10^{-5} \text{ M} = 0,0284 \text{ M}$ forms hydrogen ion concentration gradient:

 $[\mathbf{H_3O^+}]_{right}/[\mathbf{H_3O^+}]_{left}=10^{-5.5}/0,0284$, which drives excergic $\Delta \mathbf{G} = -22,5 \text{ kJ/mol}$ proton movement through epithelial cell membrane proton channels: $\mathbf{H_3O^+}_{left} \leftarrow \underline{\text{proton channel}} \rightarrow \mathbf{H_3O^+}_{right} + \Delta \mathbf{G}$. General process $\mathbf{H_2O+CO_2}\uparrow_{gas}+\mathbf{H_2O}\uparrow_{gas}$ require heat supply endothermic $\Delta H=54,5 \text{ kJ/mol}$ to drive spontaneous

 ΔG = -82,0679 kJ/mol products evaporation $CO_2\uparrow_{gas}$ and $H_2O\uparrow_{gas}$ keeping moisture H_2O on surface of membrane. Hydrogen ions water acidity shift endothermic ΔH_r = +54,5 ^{kJ}/_{mol} and exoergic ΔG_r = -82,1 ^{kJ}/_{mol} decomposition H_3O^+ +HCO₃⁻ breath out to AIR CO₂↑_{gas} with $H_2O\uparrow_{gas}$:

 $H_{3}O^{+}+HCO_{3}^{-}+Q \leftarrow \xrightarrow{\text{Membrane}} H_{2}O + CO_{2}\uparrow_{\text{gas}} + H_{2}O\uparrow_{\text{gas}} + \Delta G_{r} = -82,1 \text{ kJ/mol. excergic}.$

Aquaporins are wide class of membrane crossing channel proteins, which are integrated in all living organisms: animals, plants, bacteria. On <u>Cell membranes</u> effecting Physiology, Biochemistry and Health. Aquaporins are large families (over <u>450 members</u>) that are present <u>in all kingdoms of life</u>.