Medical Chemistry. Department of Human Physiology and Biochemistry

Spectrophotometry

<u>TASK</u>: Determine by spectrophotometer "Jenway" the concentration of riboflavin vitamin B_2 and appreciate sensitivity calculating molar absorption coefficient:

Nr.1, Nr.2, Nr.3, Nr.4, Nr.5, Nr.6.

Calibration graph preparation in Table 1.

1. Standard solution of riboflavin $C_{riboflavin}=0.04 \text{ mg/mL}$ have been prepared in 8 test tubes 10 mL standard solution with distilled water.

2. Calculated concentrations in 8 tubes are fix results in table: $C_{B2} = \frac{C_{Riboflavin} \bullet V_{B2}}{10mL}$

3. Choose on spectrophotometer "Jenway" wave length λ = 445 nm and measure absorption

 $A_x = log(Io/I)$ of chosen samples Nr.__. Use calibration graph from table and read unknown concentration of the sample C_x .

Table of results

Solution Nr.	blank	1	2	3	4	5	6	7	8
V _{B2} (mL) C _{B2} =0.04	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00
$mL \; V_{\bar{u}dens}$	10.00	9.50	9.00	8.50	8.00	7.50	7.00	6.50	6.00
Absorption A=log(Io/I)	0.000	0.063	0.121	0.184	0.247	0.302	0.368	0.426	0.482
C _{B2} , mg/mL	0,000	0,002	0,004	0,006	0,008	0,010	0,012	0,014	0,016

Concentration of sample : C_x =..... mg/mL= g/L

Calculate the molarity of B_2 solution $C_M = C_x/M_{B2}$ and molar absorption factor **a** M⁻¹cm⁻¹, if glass cell thickness size is measured. Use the ruler and check the glass cell thickness! I=1...... cm or no?

 $C_{M}=C_{x}/M_{B2}=.....g/L/....g/mol=.....M^{-1}$

Concentration of sample : C_x =..... mg/mL= g/L

Graph for calibration line $\mathbf{A} = \mathbf{a} \cdot \mathbf{C} \mathbf{I}$ drawn through zero **0** value . $\mathbf{A} = \mathbf{C} = \mathbf{0}$

On spectrophotometer "JanyWay" measure the **sample** for analyze absorption A_x and calculate its concentration C_x using the graph (mg/mL).

Give the calculated results for riboflavin content mg%, which shows

 $mg\% = mg/100mL \cdot 100\% =mg\%$

The molar mass of oxidized form riboflavin (B₂ vitamin) is $M_{B2} = 454.35$ g/mol.

1	e
	2 + 11 + 16
	3 <i>Table</i> Measured sample solution

3. table.Measured sample solutions concentrati							
Sample Nr.	1	2	3	4	5		
Absorption A _x	0,147	0,452	0,086	0,228	0,280		
Concentration y, mg/mL	0,0046	0,014	0,00275	0,0075	0,00925		

Calibration graph strait line $A = a \cdot C I$ mathematically through zero point, as both are A = C = 0. On "JanyWay" spectrophotometr measure sample absorption A_x and use the graph for its concentration C_x (mg/mL) evaluation.

Converting riboflavin content to miligram percents mg%, what shows amount on 100 mL samples mg%= mg/100mL•100%=.....mg%

Mol mass oxidized riboflavin B_2 vitamin form is $M_{B2} = 454.35$ g/mol.

Calculate molarity of B₂ vitamin solution $C_M=C_x/M_{B2}$ and molar absorption coefficient a M⁻¹cm⁻

¹, if cuvette thickness measured. With ruler check the thickness! $\ell = 1$ cm !?

$$C_{M} = C_{x}/M_{B2} = 0.018 \text{ g/L/454.35} = 3.96*10^{(-5)} \text{ (mol/L) M}^{-1}$$
$$a_{445} = A_{x}/C_{M}/\ell = \frac{A_{x}}{C_{M} \cdot l}, \text{ M}^{-1}\text{cm}^{-1} = 0.53/3.96/10^{(-5)} = 13383.8 \text{ M}^{-1}\text{cm}^{-1}$$

Absorption A_x give concentration: $C_M = A_x/a_{445}/l = 0.53/13383, 8/1 = 3.96*10^{(-5)} (^{mol}/L) M$

which transfer atoms together with two electrons as sum $2H^+ + 2e^-$.

Biochemical oxidation – reduction reactions progressing with water soluble

two electron equivalents transfer.

Biochemistry call vitamins about enzyme cofactors.

Small molecules for transfer call about cofactors. Vitamin B2 is cofactor for oxidoreductases. Cofactors - vitamins will study in course of Biochemistry.

Conclusions

1a. Riboflavin B₂ vitamin is 2 H carrier in enzyme class E.1 Oxidoreductases.....

1b. <u>Reduction is:</u> hydrogen addition...... 1c. <u>Oxidation is</u> hydrogen removing.....

3. Ratio falling light intensity Io over throughout going light I as logarithm

absorption measure is $A_x = \dots$

4. Light absorption calculates as logarithmic expression $A_x = log(Io/I) = ...$

5. Riboflavin concentration in the sample Nr..... exhibits absorption $A_x =$

6. Beer-Bugeers-Lambert's Law $A_x = a_{445} \cdot C \cdot \ell = log(Io/I)$ according light absorption A_x is

proportional to vitamin B_2 concentration C_x =.....g/L Riboflavin Vitamin B_2 molar concentration is C_M =.....mol/L.

7. Calculated molar absorption coefficient at λ =445 nm is **a**₄₄₅= 13383,8 M⁻¹cm⁻¹.