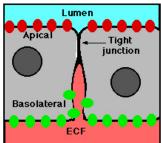

IUBMB Life Volume 61, Issue 2, pages 112–133, February 2009 Water channels H₂O and O₂,NO,CO:an overview


3M9I	+ Cl ⁻ , NO ₃ ⁻ eye-lens <u>cells; thin</u> junctions between fibre <u>cells</u>
1YMG	AQP0 with a measured Water permeability <u>15-fold lower</u> than that of AQP1 at <u>pH 6.5</u> ;
AQP0	AQP0 is <u>reduced</u> a further <u>three fold at pH 7.5</u>
2B6O	AQP0 induce a gating effect close conformations of extracellular loop A Met176, His40
1SOR	AQP0 becomes more constrained near the conserved Ar/R constriction site
H6I	pH's <u>below</u> 5.5 Cl ⁻ , NO ₃ ⁻ , <u>Aquaglyceroporins</u> : red blood <u>cell</u> (<u>RBC</u>),
1J4N	Cation conductance has been <u>induced</u> in AQP1 by activation of <u>cyclic GMP–dependent</u> pathways.
AQP1-	Water conductance was <u>blocked</u> by Hg^{2+}
1 IH 5	apical & <u>basolateral</u> membranes of epithelial brain <u>cell</u> , rodent brain cell
1FQY	AQP1- null humans kidney proximal-tubule water reabsorption gastrointestin al tract Water absorption in the teleost intestin e the ovary and in the oocyte ; salivary gland ;
	urinary bladder granular kidney <u>cell</u> s & subcellular
	vasopressin regulated urine concentration (~25% of the blood filtrate)
AQP2	translocated from the <u>cytoplasm</u> ic pool to the apical plasma membrane
	of the granular <u>cell</u> s of the pelvic patch and urinary bladder
	+ <u>Aquaglyceroporins</u> , urea: gastrointestinal tract Water absorption; rodent brain cell astrocyte end-feet
AQP3	Water enters in the principal <u>cell</u> through AQP2 and exits through located in the basolateral membranes trachea
	kidney(basolaterally) basal AQP3 & ciliated columnar AQP4 cells
AQP4	Rodent-brain; basolateral membrane of ciliated columnar <u>cell</u> s alveolar epithelium; salivary gland
	kidney(basolaterally) 3IYZ, 2D57, 3GD8
	stomach, duodenum, pancreas, airways, lungs, salivary gland, sweat glands, eyes, lacrimal glands, and the inner ear
AQP5	tears & pulmonary submucosal glands secretions apical membrane & rodent brain <u>cell</u> s, <u>gating</u> is lacking
AQP6	+ Cl ⁻ , NO ₃ ⁻ multipermeable channel; lens cells; may <u>play</u> a role in the body <u>acid</u> -base homeostasis in the intracellular vesicles of <u>acid</u> -secreting intercalated cells of the RCD colocalized with the H ⁺ -ATPase
	be Hg^{2+} - <u>inhibit</u> able Water channel function is activated by Hg^{2+} and low pH
4.533.0	GLPF <u>Aquaglyceroporins</u> , urea; kidney proximal tubule epithelium <u>cell</u>
1FX8	glycerol reabsorption; together with AQP1 in the brush border
AQP7	in the concentration of urine taking place in the proximal nephron cells
1LDF	\sim 75% of the blood filtrate which is \sim 150–180 L per day
	NH4 ⁺ ;lens & kidney intracellularly proximal tubule & small intestine absorptive:epithelium cell
AQP8	in the concentration of urine taking place in the proximal nephron also in mitochondria
	~75% of the blood filtrate which is ~150–180 L per day & rodent brain cell
AQP9	+ <u>Aquaglyceroporins</u> , urea purines, pyrimidines & monocarboxylates, arsenite;
	apical membrane of brain & small intestine absorptive epithelial & <u>rodent</u> brain & glial <u>cell</u> s + <u>Aquaglyceroporins</u> , urea ; small intestine absorptive epithelial <u>cell</u> s
	"superaquaporins" or sub <u>cell</u> ular; kidney cytoplasm of the proximal tubule & rodent brain <u>cell</u> s
	"superaquaporins" or sub <u>cell</u> ular
	Archaebacterial 2EVU, 2F2B, 3NE2, 3NE20
	Plant pore opening and closing 1Z98, 2B5F, 3CN6, 4IA4, 4JC6
1RC2	3ZOJ ; Escherichia coli: Arg189 "upwards" <u>extracellular</u> Water channel is open
	2ABM, 209G, 3NK5, 3NKA, 3NKC, Arg189 "downwards" into pore & closes the channel
Fchann	Formate: 3KCU , 3KLY , 3Q7K H ₂ O Channel is roughly 20-Å long and has a diameter 1.1 Å. Water channel proteins
0=0	$ $ membrane $ _{0=0}$ (WCPSs) are trans membrane proteins that have a specific three-dimensional structure
,H	with a pore the SF radius ~1.1 Å is close average to radius of water H–O–H longetudinal 1.4 Å and 0.55 Å bent size of dipole.
0	H It can be normalized by Waters & O. NO. CO melocular as a subtraction of the second states
Ĥ.	\mathbf{H} membrane \mathbf{H} in the permeated by water & \mathbf{O}_2 , \mathbf{NO} , \mathbf{CO} molecules as solutes. Aquaporties are large families (over <u>450 members</u>) that are present <u>in all kingdoms of life</u> . Water permeability,
hilinid .	allowing normantian of 2 × 10 ⁹ water malagular nor monomor nor accound AOD1 and
ompiù i	other, which strictly prevents the conduction of protons H^+ .
Serin	e, Tyrosine, Threonine Phosphorylation to trigger the membrane trafficking of AQP1, AQP2, AQP5, and
	and the gating of AQP4. Cation conductance has been <u>induced</u> in AQP1 by activation of <u>cyclic GMP-dependent</u>
memb	prane channels represent <u>fast phenomena</u> on the order of nanoseconds pathways and was <u>blocked</u> by Hg^{2+}
<u>AQP1</u> Mol	Biol Evol (2011) 28 (11): 3151-3169. Volume 28,, Issue 11 Pp. 3151-3169. 1J4N 1J4N AOPO 1TM8>superSeed>1YMG 2B5F (2004) Proc.Natl.Acad.Sci.USA 101: 14045-14050
HET	BNG A 801 21 1J4N <u>AOP1</u> Mol Biol Evol (2011) 28 (11): 3151-3169

IV. Water Conductance The **cell** have an incredibly large number of these **channels** (~60% by weight of all **membrane** proteins in the **cell** plasma **membrane** is **AQP1,0 - 12**) by having

AQPs conduct water selectively. Thus, it ensures a uniform response to **osmotic homeostasis** challenge in all areas of the cell surfaces of the tightly packed cells throughout and maintains **homeostasis** of water $[H_2O] = 55,3$ M and oxygen $[O_2] = 6 \cdot 10^{-5}$ M in life systems.

WCPSs (AND OTHER MIPs) IN SOME MULTICELLULAR ANIMAL SPECIES WPCs have been discovered in **animals** at all levels of life, as well as in almost all organs and tissues of **humans** and a variety of **roles** have been documented or suggested. Selected examples are described below.

AQP1 is abundant in the <u>apical and basolateral membranes</u> of <u>epithelial cells</u> in the <u>proximal tubule</u> and <u>descending thin limb of Henle's loop</u> (DTLH), and in the <u>microvascular endothelium</u> of outer <u>medulary descending vasa recta</u> (DVR). **AQP7** and **AQP8** are also present in the <u>proximal tubule epithelium</u>. These **WCPS**s are involved in the concentration of **urine** taking place in the <u>proximal nephron</u> (~75% of the **blood** filtrate which is 150–180 L per day)<u>171</u>. The functional **role** of **AQP1** in **kidney** was confirmed by investigations on mice and **human**s.

Measurements of water conductance using oocyte and proteopositivelysome swelling demonstrate that AQP0 water permeability is 15- to 45-fold less than AQP1. Water permeability AQP1, allowing permeation 3×10^9 water molecules per monomer per second and per tetramer 12×10^9 per second. Published water-permeability data have varied from 0- to 43-fold over conduction through lipids alone or through the membranes of <u>oocytes</u> injected with water. Unfortunately, comparisons between published conduction rates are difficult because they are generally relative conductances uncorrected for the number of conducting channels, and they are also difficult because of the variety of materials and methods used.

A question arises as to the **channel** dimensions required for passage of various permeants through the channel. Use of the minimum diameter of the permeant as a rough measure of the channel diameter required for passage, as well as the diameter of the largest sphere that will fit in the channel at the narrowest constriction of the channel, provides one criterion. The diameter of the channel calculated in this way for a static structure would suggest that both of our structures of AQP0 channel (d = 1.5 Å) and the Walz structures of AQP0 channel d=2.0Å are too narrow to permit the passage of water and other larger permeants, including glycerol and urea. Previous functional studies have shown significant measurable flux through AQP0 of all three of these substances, even though some of these results are questionable. However, if the channel were to have a noncircular profile, then the available cross-sectional area could be larger than the value implied by this calculation. Further, the channel diameter values calculated for bAQP0, AQP1, and AQPZ are also all smaller than the accepted value of 2.8 Å for the diameter of a single water molecule H₂O, yet all of these AQPs conduct water at close to the diffusionlimiting rate. Therefore, to test the possible accommodation of AQP0 to these substrates, we selected sidechain rotamers of constriction-region residues of our AOP0 structure that maximized channel diameter without any main chain movement. After extensive energy minimization and annealing, the resulting structures had stable **rotamers** that could enlarge the **channel** diameter to slightly >2.9 Å, which is more than large enough for water to pass. Additional circumstantial evidence of water transport is the presence of eight Helix-bonded water 8H₂O molecules in the channel (no waters are seen in the electrondiffraction structure). These waters are moderately well ordered, as reflected by their electron densities (Graph Center) and by their B factors, which are close to the average for the protein (?B? = 55) as follows: 57,57,54,51,48, 44,41, and 38, from extracellular to intracellular in the channel. Thus, there is water throughout the **channel** pathway (Graph).