Nucleoside PhosphorAmidate Monoesters Potential Pronucleotides RNA
 
Instructor: Dr. Natalia Tretyakova, Ph.D. «hyperlink "mailto:Trety001@umn.edu"»   -   6151
PDB reference correction and design Dr.chem., Ph.D. Aris Kaksis, Associate Prof. e-mail: :ariska@latnet.lv
 
Required reading: Stryer 4th Ed. Ch. 34 p. 903-906
 
Synthesis: Take Home Message
 
1) DNA sequences are translated into RNA messages by RNA polymerases.
 
2) The initiation of RNA synthesis is controlled by  specific DNA promoter sequences.
 
3) The synthesis of RNA is governed by initiation, elongation, and termination steps.
 
Flow of genetic information
 
 DNA ||------------->  RNA ----------------------->   Proteins ----------->>>  Cellular action
Replication ||     ­transcription                  ­translation          -------->>>>>||||||||| ­­­­­­­­­­­­­
           ||                    nucleare
    DNA nucleare <= Reverse  transcription of telomeres
 
                                    Notable exception: retroviruses
 RNA ||--->  DNA ------------>  RNA  ------------------->   Proteins -------->>>  Cellular action
Reverse ||­ || transcription ­ transcription          ­translation       ------------>>>>>||||||||||| ­­­­­­­­­­­­­
    DNA cytosolic      nucleare
 
 Structural differences between DNA and RNA
 
DNA and RNA differ in several important ways:
1.) RNA is composed of Uracyl U and not Thymine T
2.) The sugar composition of RNA is composed of ribose and not de-oxy-ribose
3.) Sugar pucker on RNA is 3’ endo and RNA is usually single-stranded
(although it forms hairpins by folding over the same strand and makes the spliced tertiary 3° structure)
 
DNA RNA
 Thymine T 
2'-de-oxy-ribose
 Uracyl U
D-ribose
 
RNA is a biopolymer consisting of four 4 nucleotide units
 

usually RNA single stranded but can form loops and splice to form tertiary 3° structure:
                              --->C--->
                              U          G
                              ­           ¯
                              U         G
                                 \        /
                                  G=C  <---
                                  A= U <--- Doublestranded
                                  C=G  <--- Spliced tertiary
                                  C=G  <---  structure RNA
                                  G=C  <---                   Loop
                                  C=G  <---             formation
                                  C=G  <---                Region
                                  G=C  <---  
5'---> U-C-C-C-A-G-/     \A-U-U-U --->3'                         There are Three Types of RNA
 
mRNA = Messenger RNA; an RNA copy of the DNA sequence (gene) used a template for
                                                                                                           protein synthesis

 
tRNA = Transfer RNA; a small 76 bp RNA that is attached to an amino acid AA which
                                                                                can be added to a growing peptide chain

 
rRNA = Ribosomal RNA; component of ribosomes with catalytic and structural function;
                                                                                     three types exist 23S, 16S, and 5S

 
Quantities of RNA in E. coli
 
Type           Relative amount      Mass # of Nucleotides
__________%_______________kDa____Number____
 
rRNA         80             23S          1.2•103   3700
                                    16S          0.6•103   1700
                                    5S            3.6•101     120
 
tRNA         15                              2.5•101       76
 
mRNA        5                                heterogeneous
 
RNA Polymerization Requirements
 
Double-stranded DNA template strand
GTP or ATP as the starting nucleotide (no primer)
NTPs
Mg2+ 
 
RNA Polymerase Structure
 
RNA polymerases from bacteria are very large (500kd) are composed of four subunits. a2bb's (holoenzyme)
 
Subunit      Number         Mass, kd    Function
a                   2                      37          Binds regulatory sequences
b                   1                    151          Forms phosphodiester bonds
b'                  1                    155          Binds DNA template 
s                   1                      70          Recognizes promotor and initiates synthesis
 
RNA synthesis in E.Coli
 
1. Initiation: search DNA to find promoter sites
                     unwind a region of DNA to form replication bubble
                     form the first 1st phosphodiester bond
 
2. Elongation add NTPs to the growing chain following Watson-Crick base pairing rules
 
3. Termination detect termination signals and pull RNA away from DNA duplex
 
Prokaryotic Promoter sequences
 
Promoter sequences for different genes                         ¯ Start site
Promoter for:          -35 region   Spacer         -10 region      Spacer    ¯  Transcribed
trp operon     G     TTGACA     N17       TTAACT        N7        A
tRNATyr         G    TTTACA      N16       TATGAT        N7        A
lP2                 G    TTGACA     N17       GATACT        N6        G
lac operon      C    TTTACA      N17       TATGTT        N6        A
rec A               C    TTGATA      N16       TATAAT        N7        A
lex A                G   TTCCAA      N17       TATACT        N6        A
T7A3               G   TTGACA      N17       TACGAT        N7        A
Consensus         TTGACA                  TATAAT
Initiation of RNA Polymerization
 

 
RNA Pol binding to promoter of DNA
 
A
B
C
 
RNA polymerase                                              ¯                             RNA Synthesis




      

                                                                    

RNA sequence is complementary to that of the transcribed DNA strand
 
Coding strand ||
5' ...ATGGCCTGGACTTCA... 3'  Sense strand of       DNA
3' ...TACCGGACCTGAAGT...5'   Antisense strand of DNA
Non-coding (template) strand  ||  Transcription of antisense strand
5' .. .A U G G C C U G G A C U U C A... 3'             mRNA
                                   || Translation of mRNA
           Met - Ala -  Trp -   Thr -  Ser -        Peptide
 
RNA vs DNA synthesis
 
Similarities:
             require a DNA template
             similar mechanism of nucleotide addition
             Addition of nucleotides follows Watson-Crick base pairing rules
 
Differences:
             RNA Pol does not require a primer
             Unlike DNA Polymerases, RNA Polymerases do not have nuclease activity
             RNA Pol is not able to proof read for mismatches
             RNA synthesis is slower than DNA synthesis (50 nt/sec)
 
RNA Polymerase Holoenzyme
 

 
T7 RNA Polymerase
 

 
Termination of RNA Polymerization
 
                               --->C--->         Two 2 mechanisms possible :
                              U         G      1)  stable hairpin formation
                              U          G       2) Rho (r) protein-mediated termination
                                 \       /
                                  G=C  <---
                                  A= U <--- Doublestranded
                                  C=G  <--- Spliced tertiary
                                  C=G  <---  structure RNA
                                  G=C  <---                   Loop
                                  C=G  <---             formation
                                  C=G  <---                Region
                                  G=C  <---  
5'---> U-C-C-C-A-G-/     \A-U- U-U --->3' 
 
r-independent termination
 
5'---> UCCCAGCCCGCC U AAU RNA strand
                                                           G                                      unwinded antisence single strand DNA
                                                               A   GCCCG A  A A A  A A A A   C T
                                                                 G/  |  |  |  |  |  |    |   |   |    |   |   |   |             T
                                                                C \CGGGC U  U U  U U  U U U -OH--->3'   G TT TT¬5'
                                                            T RNA polymerase => movement =>              |   |  |   |  |
DNA double strand                        C                                                                            C AA AA --->3'
3'<--- GGG TCG GGCGGAT TCA                                                                           A A
        |  |   |  |   |  |   |   |  |   |  |  |  |   |  |  |                              T - T - T - T - T - T - T - G
5'--->CCCA GCCCGCCT A AGT G A G C G G G C unwinded sence single strand DNA
 
                                                               --->G--->         One of Two 2 mechanisms possible :
                                                              A          U       1)  stable hairpin formation
                                                              A          G       2) Rho (r) protein-mediated
                                                                      A                                           termination
                                                                 C=G  <---     Doublestranded
                                                                 G=C  <---      Spliced tertiary
                                                                 C=G  <---     structure RNA
                                                                 C=G  <---        hairpin Loop
                                                                 C=G  <---             formation
                                                                 G=C  <---                Region
                                        5'--->CCCA-/     \ U
                                                                            U       A A A  A A A A  C T
                                                                                U /  |    |   |   |   |   | T
DNA double strand                                                 A \ U U U U U U -OH--->3'    G T TTT <---5'
3'<---GGG T CGG GC GGA T TCA CT CGCCCG                                               |   |  |   |  |
         |  |   |  |   |  |   |   |  |   |  |  |   |   |  |  |   |  |   |  |  |   |  |  |         T T T T T T T T G AAC AA AA --->3'
5'--->CCCA GCC CG CCT AAGT  GA GCG GGC unwinded sence single strand DNA
 
                                                               --->G--->
                                                              A           U
                                                              A          G
                                                                U      A
                                                                 C=G  <---     Doublestranded
                                                                 G=C  <---      Spliced tertiary
                                                                 C=G  <---     structure RNA
                                                                 C=G  <---           Stem Loop
                                                                 C=G  <---             structure
                                                                 G=C  <--- 
                                       5'--->CCCA-/     \ U U U U U U U U U -OH--->3'
DNA double strand
3'<--- GGG T CGGGC GGAT TCA CTC GCCCG A A A A AA AA C TT G T TT  T  <---5'    
          |  |   |  |   |  |   |  |  |   |  |  |  |   |  |  |   |  |  |  |  |   |  |  |   |   |   |   |   |  |   |  |   |   |  |   |   |   |  |   |
5'--->CCC A GCCCG CCTA AG T GAGCGGGC T T T T T T T T G AA C A AAA --->3'
 

 

 
RNA Polymerization Reaction
 
5' 3'
3' 5'
                                      ¯ RNA Polymerase
5'3'
3'5'
                        s    ¬¾¾¯ 17 bp unwound NTP's
                                        ¯ Coding Strand ¯
  5'3'

PPP                  RNA-DNA ­ 12 bp
 
Eukaryotic vs prokaryotic cell
 
     
Prokaryotes: • no membrane-bound nucleus   Eukaryotes: • DNA is in membrane-bound
• transcription and translation are coupled                                                              nucleus
                                                                                   • Transcription and translation are
                                                                                               separated in space and time
RNA splicing in eukaryotes
 
                                                                    gene                                                         
    Chromosomal DNA
nuclear  Primary transcript hnRNA
  RNA
 ¬RNA Splicing® messenger mRNA
introns degrading to
® nucleotides                                                                                                           to cytosol
 
Eukaryotic RNA Polymerases
 
Type      Localization     RNA produced      -amanitin______actinomycin D
 
I             Nucleoli            rRNA                      Insensitive             strong
 
II            Nucleoplasm    pre-mRNA             Strongly inhibits   weak
 
III           Nucleoplasm    tRNA,5S rRNA     Weakly inhibits    weak
 
a-amanitin
 
    
                 RNA Pol II Inhibitor                         Amanita phalloides (the death cap)
 
Actinomycin D
 
    
 
Eukaryotic RNA Polymerase II
 
RNA Pol II is responsible for transcription to pre-mRNA
 
-        8-12 subunits
 
-        Two 2 large subunits ( 220kD and 140kD) responsible for synthesis
 
-        Regulated by phosphorylation of carboxyl-terminal domain (CTD)
 
-        some subunits are shared for RNA Pol I-III
 
Genes for Subunits of Yeast RNA Polymerase II
 
 
Gene
 
 
Protein Mass(kDa)
 
Deletion Mutant
 
E.Coli analog
 
RPB1
RPB2
RPB3
RPB4
RPB5
RPB6
RPB7
RPB8
RPB9
RPB10
RPB11
RPB12
190
140
35
25
25
18
19
17
14
8
14
7.7
nonviable
nonviable
nonviable
nonviable
conditional
nonviable
nonviable
nonviable
conditional
nonviable
nonviable
nonviable
b
b
a
-
-
-
s
 
 
 Core subunits
 Shared subunits
Type II Eukaryotic Promoters
 
Consensus sequence:
          -110                                                           -40              -26          +1
5'CAAT GGGGCGTATAAAA
      CAAT Box                       GC Box                        TATA Box        |--->| ­ Start site
   -------------------------------------> Promoter sequence---------------------------------->||  Coding sequence
Examples:
   b-globin
   SV40 barly
   thymidine kinase
   histone H2B
    -120        -100         -80        -60         -40          -20         +1           +20
       |               |              |             |             |              |              |              |                |
        TATA Box -                                     GC Box -  
      (TATAAAA )                                  (GGGCGG) 
       CAAT Box -                                    Octamer -
 (GGCCAATCT)                            ( ATTTGCAT)
 
Initiation of transcription in eukaryotes
 
RNA Pol II can not initiate transcription by itself
Transcription factors (TFII) are required
The key initiation step is the recognition of TATA box by TBP
 
                                        Enhancers
Looping of DNA 
 
Formation of RNA Polymerase II pre-initiation complex
 

                               TFIID ®¯
IID contains TBP that binds TATA box
                               TFIIA ®¯
   IIA stabilizes IID binding to promoter
                                                      TFIIB ®¯
               IIB binds initiation sequence
                  RNA polymerase II + TFIIF ®¯
                   Pol II binds IIB
                                                                  TFIIE + TFIIH ®¯

 
               TATA Binding Protein
 

               
 
                      TBP Bends DNA
 


 
Hydrogen Bonds Necessary for TBP Binding

Enhancers can stimulate transcription from many nucleotides away
                                        Enhancers
Looping of DNA Figure 33-28 page 856
 
                           -200                          -100                                                    +1
                             |                                 |                                                          |
                                                ||<--------------------||                                                                                                             ||---------------------->
                             Late RNA ­ ||                                                                 || Early RNA
SV40  ———————————————————————
 
                                                   ||<-----------GC box                                                                                                     ||------------>
                              ||                                                                                    ||   ­ RNA
DHFR ————————————————————————
 
                                                    ||<----------GC box                                                                                                     ||----------->
                              ||                                                                                   ||  ­ RNA
Heat-shock gene ——————————————
                              ­ ||                                                                         TATA
                                                    ||<--------------Heat-shock element         Figure 33-29 page 857
Stryer: Biochemistry, Fourth Edition © 1995 by W.H.Freeman and Company.
 
1. Steroid hormone response elements (HRE) Estrogen, progesterone, glucocortecoids
2. P53 tumor suppressor gene.
Zinc Finger
 
"INDEPENDENCE OF METAL BINDING BETWEEN TANDEM CYS2HIS2 ZINC FINGER DOMAINS"
B.A. Krizek, L.E. Zawadzke, and J.M. Berg
 
                        Contents of file KRIZEK.KIN: 1ZAA.PDB
Kin.1 - Calpha trace of the Zif/268-DNA complex structure
 
1D66.PDB-Zn2+-Gal4
       Leucine zipper 2ZTA.PDB

        Turn the sidechains back on, and notice that the interhelical contacts are made by sets of residues that look like wide rungs on a ladder (not, in fact, like teeth on a zipper).  Every other rung contains a pair of orange leucines; alternate rungs contain pairs of gold valines, with one Met pair at the top and one Asn pair near the middle.  In this kinemage, all of the Leu zipper sidechains are grouped and color-coded by their position in the seven-residue heptad repeat: 'd' (Leu) in orange; 'a' (Val) in gold, or in hotpink for Asn 16; 'e' and 'g', the contact-edge hydrophilics, in skyblue; and the outside positions 'b', 'c', and 'f' in cyan.  Turn on the "heptad lbl" button to see labels a through g for one repeat.
        An end view of the Leu zipper supercoil shows the helix-helix contacts most clearly.  Choose Reset2 under Graphics, "zoom, etc" under the Other menu, and zoom to enlarge the image.  Turn off the "e, g" and the "b, c, f" buttons, to concentrate on the buried contact layers at positions a and d.  For a detailed tour, set the zoom to 3.0, the zslab to 100, and move the slider to the top of the ztrans scrollbar; you should see just a little backbone and the sidechains of Met 2 at the end of each helix.  Then hold down the mouse just above the arrow at the bottom of the ztrans scrollbar to move the structure fairly rapidly through the visible slab.  A little more than one "rung", or layer, will be in view at a time.  Notice how similar the geometry is for each rung of Leu 'd' sidechains; Val 'a' rungs are also similar to one another, but different in detail from Leu rungs.  Leu Cbetas point toward each other and their Cgammas turn out; Val Cbetas point outward, while one of their Cgammas points inward to touch.  Val is too short for optimal contact in a 'd' position, and Leu would not work in an 'a' position, because although its Cgamma could lie in the correct place its Cdeltas would then bump into the opposite helix.
        Turn on the "e, g" side chains and move the structure through the slab again by holding down the mouse just below the up arrow on the ztrans scrollbar.  Notice how a given leucine contacts four surrounding sidechains on the opposite helix: its symmetry-mate Leu in 'd', the two adjacent 'a' residues, and the preceding 'g' residue.  This kind of arrangement is called "knobs-into-holes" packing.  It is usually not found in such a regular form in globular proteins, but was originally proposed by Francis Crick in 1953 to stabilize coiled coils.



 

 
                                                                          RNA polymerase ||

                              Nascent RNA ||            || ­ Cleavage signal               Figure 33-32, page 859 Stryer:
                              Nascent RNA ||<--- Cleavage  by specific              Biochemistry, Fourth Edition 1995
                              Nascent RNA ||<---              endonuclease             by W.H.Freeman and Company
                                           ATP--->||<---   Addition of tail by
                                            PPi<---||<---  poly(A) polymerase
5' CapAA U AAA  AAAAAAAAAAAAAAAA(A)n
Polyadenylated mRNA precursor
RNA Synthesis: Take Home Message
 1) DNA sequences are translated into RNA messages by RNA polymerases.
 2) The initiation of RNA synthesis is controlled by specific DNA promoter sequences.
 3) The synthesis of RNA is governed by initiation, elongation, and termination steps.