Protein Synthesis in eukaryotes
Instructor: Dr. Natalia Tretyakova, Ph.D. «hyperlink "mailto:Trety001@umn.edu"»   -   6151
PDB reference correction and design Dr.chem., Ph.D. Aris Kaksis, Associate Prof. e-mail: :ariska@latnet.lv
 
Required reading: Stryer 4th Ed. Ch. 34 p. 903-906
 
Eukaryotic Ribosome
 

80S 
 
Eukaryotes Prokaryotes
60S subunit 50 S
40S subunit 30S
28S RNA
5S RNA
5.8S RNA
18S RNA
23S RNA
5S RNA
-
16S RNA
 
Table 1. The genetic code. for mRNA Y                                                     Genetic Code
 
1st position 2nd position 3rd position
(5' end)--> U C A G (3' end)-->
U Phe
Phe
Leu
Leu
Ser
Ser
Ser
Ser
Tyr
Tyr
STOP
STOP
Cys
Cys
STOP SelenoCys Trp Mitochondria
Trp
U
C
A
G
C Leu
Leu
Leu
Leu
Pro
Pro
Pro
Pro
His
His
Gln
Gln
Arg
Arg
Arg
Arg
U
C
A
G
A Ile
Ile
Ile
Met init
Thr
Thr
Thr
Thr
Asn
Asn
Lys
Lys
Ser
Ser
Arg
Arg
U
C
A
G
G Val
Val
Val
Val
Ala
Ala
Ala
Ala
Asp
Asp
Glu
Glu
Gly
Gly
Gly
Gly
U
C
A
G
 
Sets of three 3 nucleotides (codons) in an mRNA molecule are translated into amino acids AA in the course of protein synthesis according to the rules shown. The codons G U G and GAG, for example, are translated into valine and glutamic acid, respectively. Note that those codons with U or C as the second 2 nucleotide tend to specify the more hydrophobic amino acids AA.
 
Initiation of Translation: Ribosomal Binding Site
 
                                             Shine-Delgarno
16S                                    U CC U CCA  
mRNA  5’ GA U U CC U A GG A GGU U U GACC U A U G GCC U U U 3’
Protein                                                                                         fMet   Ala       Phe 
 
Initiation of Translation in eukaryotes
 
Initiating AA tRNA is Met, not fMet;
Initiator tRNA is Met-tRNA;
Initiatior signal is AUG  – no Shine-Delgarno  sequence;
40S subunit-Met-tRNA;  - initiation factors complex binds 5’ cap and scans mRNA for the nearest AUG
 
Eukaryotic mRNA is 5’-Capped
 
Eukaryotic counterparts of bacterial factors
 
Initiation                             Bacteria   Eukaryotes      
                                            IF 1, 3      eIF4, eIF3, eIF4-9
                                            IF 2          eIF2
                                            -                cap-binding factors
Elongation
                                            EF-Tu      eEF1a
                                            EF-Ts       eEF1bg
                                            EF-G        eEF2
Termination
                                            RF-1         eRF
                                            RF-2
                                            RF-3
Diphtheria toxin
 
a protein that catalyzes modification of eEF2, inhibiting eukaryotic protein synthesis
Adds ADP ribose, blocking eEF2 ability to carry out translocation
 
Protein Synthesis in eukaryotes
 
1) Eukaryotic translation has many similarities to prokaryotic protein synthesis.
2) Notable differences include different ribosome size/composition, soluble protein factors, 
                                                                                           and the mechanism of initiation. 

3) Eukaryotic genes typically code for one 1 protein, while
                                                                    many prokaryotic genes are polycistronic.

4) Eukaryotic transcription and translation are separated in space and time.
5) Most antibiotics are selective for bacterial protein synthesis.
 
          Posttranslational processing of proteins
1.       Protein folding
2.       Proteolytic cleavage
3.       Amino acid modification
4.       Attachment of carbohydrates
5.       Addition of prosthetic groups
 
Control of gene expression: Take Home Message
 
1) Gene expression in  all organisms is mainly controlled at the level of
                                                                                transcription initiation.

 
2) Two 2 types of gene expression exist: constitutive and inducible/repressible genes.
 
3) Control of transcription rates is achieved by binding of the regulatory proteins to
                                       promoter region, which turns RNA polymeraseon’ or ‘off’.

 
4) Regulatory proteins contain common structural motifs that enable them
                            to recognize specific regions of DNA via noncovalent interactions.

 
Flow of genetic information
 
 DNA ||----------------->  RNA ----------------->   Proteins ----------->>>  Cellular action
Replication ||     || ­transcription                  ­translation              ----------->>>>>>>||||||||| ­­­­­­­­­­­­­
           ||                    nucleare
    DNA nucleare <= Reverse  transcription of telomeres
 
                                    Notable exception: retroviruses
 RNA ||----->  DNA ----->  RNA  ------------->   Proteins ---------->>>>>>>  Cellular action
Reverse ||transcription ­ transcription          ­translation                        ---------->>>|||| ­­­­­­­­­­­­­
    DNA cytosolic      nucleare
 
Regulation of gene expression in bacteria
 
· rate of protein synthesis in E. Coli can vary 1000-fold
 
· Gene activity is regulated on the level of transcription
 
Two 2 main types of prokaryotic genes:
 
1.    1. Constitutively expressed genes (housekeeping genes) – always on
R    2. Regulated genes – turned on in response to environmental conditions
 
beta-galactosidase of E. Coli is an example of inducible enzyme
 
                   Lactose
              beta-galactosidase || + H2O
              
 
The Lac-Operon   O
 
     I(r) permeasep    O     z          Y           A          stop
==|=======|= = =|=====|=====|=========|===========|============|=========|= = DNA
      *******        ||    ----->||-----> **********    ***********    ************                             mRNA
      ∆∆∆∆∆∆       ||   ­           ||----->∆∆∆∆∆∆∆∆       ∆∆∆∆∆∆∆∆∆     ∆∆∆∆∆∆∆∆∆∆                          protein
    repressor        ||­               ||            b-gal'ase        lac-permease    S-gal-trans-Ac                        protein
                LAC Lactose      || Splits LAC into      Pumps LAC into   Not involved in
      removed operon O<---||       Gal + Glc         the cell                     LAC metabolism
 
P Promoter Binding site for RNA Pol
 
O
 
Operator
DNA control region that
prevents transcription when
repressor is bound
I ( R ) Regulator repressor gene Codes for the repressor protein
 
Z , Y , A
 
Structural genes
Code for b-galactosidase, galactoside permease, and thiogalactoside transacetylase, respectively
 
Control of transcription in lac operon
 
——
  ||-->I mRNA ----->||Operon--->+ Inducer <--- IPTG
——
   1,6-allolactose  --->=>----->                                              IPTG
Inducer
 
Prokaryotic mRNAs often are polycistronic
(encode more than one polypeptide)

 
(a)  transcription in the presence of an inducer

RNA polymerase binds, transcription of structural genees begins
Inactivated repressor cannot bind to operator
Inducer molecules bind to repressor, inactivating it Beta-Galactosidase   Permease   Acetyl transferase
 
Interactions between lac repressor protein and operator sequence
 
Lac repressor protein is a tetramer of identical 37 kd subunits
It tightly binds operator sequence (Kd = 10-13 M)
Finds operator site by diffusing along DNA molecule
High selectivity for operator sequence (106)
5’ …GAATTGTGACGGATAACAATTT…3’
3’… CTTAACACT GCCTATTGTTAAA…5’
 
LAC repressor 1LCC.PDB

 
Lac repressor bends DNA
 

                     Zinc Finger
 
"INDEPENDENCE OF METAL BINDING BETWEEN TANDEM CYS2HIS2 ZINC FINGER DOMAINS"
B.A. Krizek, L.E. Zawadzke, and J.M. Berg
 
                        Contents of file KRIZEK.KIN: 1ZAA.PDB
Kin.1 - Calpha trace of the Zif/268-DNA complex structure
 
1D66.PDB-Zn2+-Gal4
       Leucine zipper 2ZTA.PDB

        Turn the sidechains back on, and notice that the interhelical contacts are made by sets of residues that look like wide rungs on a ladder (not, in fact, like teeth on a zipper).  Every other rung contains a pair of orange leucines; alternate rungs contain pairs of gold valines, with one Met pair at the top and one Asn pair near the middle.  In this kinemage, all of the Leu zipper sidechains are grouped and color-coded by their position in the seven-residue heptad repeat: 'd' (Leu) in orange; 'a' (Val) in gold, or in hotpink for Asn 16; 'e' and 'g', the contact-edge hydrophilics, in skyblue; and the outside positions 'b', 'c', and 'f' in cyan.  Turn on the "heptad lbl" button to see labels a through g for one repeat.
        An end view of the Leu zipper supercoil shows the helix-helix contacts most clearly.  Choose Reset2 under Graphics, "zoom, etc" under the Other menu, and zoom to enlarge the image.  Turn off the "e, g" and the "b, c, f" buttons, to concentrate on the buried contact layers at positions a and d.  For a detailed tour, set the zoom to 3.0, the zslab to 100, and move the slider to the top of the ztrans scrollbar; you should see just a little backbone and the sidechains of Met 2 at the end of each helix.  Then hold down the mouse just above the arrow at the bottom of the ztrans scrollbar to move the structure fairly rapidly through the visible slab.  A little more than one "rung", or layer, will be in view at a time.  Notice how similar the geometry is for each rung of Leu 'd' sidechains; Val 'a' rungs are also similar to one another, but different in detail from Leu rungs.  Leu Cbetas point toward each other and their Cgammas turn out; Val Cbetas point outward, while one of their Cgammas points inward to touch.  Val is too short for optimal contact in a 'd' position, and Leu would not work in an 'a' position, because although its Cgamma could lie in the correct place its Cdeltas would then bump into the opposite helix.
        Turn on the "e, g" side chains and move the structure through the slab again by holding down the mouse just below the up arrow on the ztrans scrollbar.  Notice how a given leucine contacts four surrounding sidechains on the opposite helix: its symmetry-mate Leu in 'd', the two adjacent 'a' residues, and the preceding 'g' residue.  This kind of arrangement is called "knobs-into-holes" packing.  It is usually not found in such a regular form in globular proteins, but was originally proposed by Francis Crick in 1953 to stabilize coiled coils.

 
Catabolite repression
 
The level of b-galactosidase is low in the presence of glucose
Glucose suppresses lac operon transcription by lowering the
                                                                                   concentration of cyclic AMP (cAMP)

The function of cAMP in bacteria is to activate CAP (Catabolite gene Activator Protein)
cAMP-CAP complex binds promoter sites, stimulating the transcription of lac operon
 
cAMP Promoter sequences for different genes
 
Promoter for:          -35 region   Spacer         -10 region      Spacer    ||  Transcribed
trp operon     G     TTGACA     N17       TTAACT        N7        A
tRNATyr         G    TTTACA      N16       TATGAT        N7        A
lP2                 G    TTGACA     N17       GATACT        N6        G
lac operon      C    TTTACA      N17       TATGTT        N6        A
rec A               C    TTGATA      N16       TATAAT        N7        A
lex A                G   TTCCAA      N17       TATACT        N6        A
T7A3               G   TTGACA      N17       TACGAT        N7        A
Consensus         TTGACA                  TATAAT
 
Enhancers can stimulate transcription from many nucleotides away
 
                                        Enhancers
Looping of DNA 
                           -200                          -100                                                    +1
                             |                                 |                                                          |
                                                <--------------                                                                                                                           ----------->
                             Late RNA ­                                                                        ­ Early RNA
SV40  —————————————————————————
 
 
                                                    ||<--------GC box                                                                                                          ||---->
                              ||                                                                                     || ­ RNA
DHFR —————————————————————————
 
 
                                                   ||<--------GC box                                                                                            ||----->
                              ||                                                                            ||  ­ RNA
Heat-shock gene ——————————————
                              ­                                                                          TATA
                                                    ||<----------------Heat-shock element
 
1. Steroid hormone response elements (HRE) Estrogen, progesterone, glucocortecoids
2. P53 tumor suppressor gene.
 
Control of gene expression: Take Home Message
 
1) Gene expression in all organisms is mainly controlled at the level of
                                                                                                       transcription initiation.

 
2) Two 2 types of gene expression exist: constitutive and inducible / repressible genes.
 
3) Control of transcription rates is achieved by binding of the regulatory proteins to
                                             promoter region, which turns RNA polymeraseon’ or ‘off’.

 
4) Regulatory proteins contain common structural motifs that enable them to recognize
                                                         
specific regions of DNA via noncovalent interactions.